# American Institute of Mathematical Sciences

May  2013, 18(3): 821-845. doi: 10.3934/dcdsb.2013.18.821

## Large-time behavior of a parabolic-parabolic chemotaxis model with logarithmic sensitivity in one dimension

 1 Department of Applied Mathematics, Dong Hua University, Shanghai 200051 2 Department of Mathematics, 15 MLH, The University of Iowa, Iowa City, IA 52242-1419,, United States 3 Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

Received  March 2012 Revised  September 2012 Published  December 2012

This paper deals with the chemotaxis system $$\left\{ \begin{array}{ll} u_t ={D} u_{xx}-\chi [u(\ln v)_x]_x, & x\in (0, 1), \ t>0,\\ v_t =\varepsilon v_{xx} +uv-\mu v, & x\in (0, 1), \ t>0, \end{array} \right.$$ under Neumann boundary condition, where $\chi<0$, $D>0$, $\varepsilon>0$ and $\mu>0$ are constants.
It is shown that for any sufficiently smooth initial data $(u_0, v_0)$ fulfilling $u_0\ge 0$, $u_0 \not\equiv 0$ and $v_0>0$, the system possesses a unique global smooth solution that enjoys exponential convergence properties in $L^\infty(\Omega)$ as time goes to infinity, which depend on the sign of $\mu-\bar{u}_0$, where $\bar{u}_0 :=\int_0^1 u_0 dx$. Moreover, we prove that the constant pair $(\mu, (\frac{\mu}{\lambda})^{\frac{D}{\chi}})$ (where $\lambda>0$ is an arbitrary constant) is the only positive stationary solution. The biological implications of our results will be given in the paper.
Citation: Youshan Tao, Lihe Wang, Zhi-An Wang. Large-time behavior of a parabolic-parabolic chemotaxis model with logarithmic sensitivity in one dimension. Discrete & Continuous Dynamical Systems - B, 2013, 18 (3) : 821-845. doi: 10.3934/dcdsb.2013.18.821
##### References:
 [1] N. D. Alikakos, $L^p$ bounds of solutions of reaction-diffusion equations,, Comm. Partial Differential Equations, 4 (1979), 827. doi: 10.1080/03605307908820113. Google Scholar [2] F. Almgren and L. Wang, Mathematical existence of crystal growth with Gibbs-Thomson curvature effects,, J. Geom. Anal., 10 (2000), 1. doi: 10.1007/BF02921806. Google Scholar [3] P. Biler, Global solutions to some parabolic-elliptic systems of chemotaxis,, Adv. Math. Sci. Appl., 9 (1999), 347. Google Scholar [4] J. A. Carrillo, A. Jüngle, P. Markowich, G. Toscani and A. Unterreiter, Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities,, Monatsh. Math., 133 (2001), 1. doi: 10.1007/s006050170032. Google Scholar [5] T. Cieślak and P. Laurençot, Finite time blow-up for a one-dimensional quasilinear parabolic-parabolic chemotaxis system,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 437. doi: 10.1016/j.anihpc.2009.11.016. Google Scholar [6] T. Cieślak, P. Laurençot and C. Morales-Rodrigo, Global existence and convergence to steady-states in a chemorepulsion system,, in, 81 (2008), 105. doi: 10.4064/bc81-0-7. Google Scholar [7] L. C. Evans, "Partial Differential Equations,", AMS, (1998). Google Scholar [8] M. A. Fontelos, A. Friedman and B. Hu, Mathematical analysis of a model for the initiation of angiogenesis,, SIAM J. Math. Anal., 33 (2002), 1330. doi: 10.1137/S0036141001385046. Google Scholar [9] A. Friedman, "Partial Differential Equations,", Holt, (1969). Google Scholar [10] Y. Giga and H. Sohr, Abstract $L^p$ estimates for the Cauchy problem with applications to the Navier-Stokes equations in exterior domains,, J. Funct. Analysis, 102 (1991), 72. doi: 10.1016/0022-1236(91)90136-S. Google Scholar [11] D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Springer-Verlag, (1983). Google Scholar [12] J. Guo, J. X. Xiao, H. J. Zhao and C. J. Zhu, Global solutions to a hyperbolic-parabolic coupled system with large initial data,, Acta Math. Sci. Ser. B Engl. Ed., 29 (2009), 629. doi: 10.1016/S0252-9602(09)60059-X. Google Scholar [13] T. Hillen and K. Painter, A users' guide to PDE models for chemotaxis,, J. Math. Biol., 58 (2009), 183. doi: 10.1007/s00285-008-0201-3. Google Scholar [14] D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. I,, Jahresber. Deutsch. Math.- Verien., 105 (2003), 103. Google Scholar [15] E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instaility,, J. Theor. Biol., 26 (1970), 399. Google Scholar [16] E. F. Keller and L. A. Segel, Traveling bands of chemotactic bacteria: A theorectical analysis,, J. Theor. Biol., 26 (1971), 235. Google Scholar [17] O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasi-linear Equations of Parabolic Type,", AMS, (1968). Google Scholar [18] H. A. Levine and B. D. Sleeman, A system of reaction diffusion equations arising in the theory of reinforced random walks,, SIAM J. Appl. Math., 57 (1997), 683. doi: 10.1137/S0036139995291106. Google Scholar [19] D. Li, T. Li and K. Zhao, On a hyperbolic-parabolic system modeling chemotaxis,, Math. Models Methods Appl. Sci., 21 (2011), 1631. doi: 10.1142/S0218202511005519. Google Scholar [20] T. Li, R. H. Pan and K. Zhao, Global dynamics of a chemotaxis model on bounded domains with large data,, SIAM J. Appl. Math., 72 (2012), 417. doi: 10.1137/110829453. Google Scholar [21] T. Li and Z.-A. Wang, Nonlinear stability of traveling waves to a hyperbolic-parabolic system modeling chemotaxis,, SIAM J. Appl. Math., 70 (): 1522. doi: 10.1137/09075161X. Google Scholar [22] T. Li and Z.-A. Wang, Nonlinear stability of large amplitude viscous shock waves of a hyperbolic-parabolic system arising in chemotaxis,, Math. Models Methods Appl. Sci., 20 (2010), 1967. doi: 10.1142/S0218202510004830. Google Scholar [23] T. Li and Z.-A. Wang, Asymptotic nonlinear stability of traveling waves to conservation laws arising from chemotaxis,, J. Differential Equations, 250 (2011), 1310. doi: 10.1016/j.jde.2010.09.020. Google Scholar [24] G. M. Lieberman, "Second Order Parabolic Differential Equations,", World Scientific, (1996). Google Scholar [25] C.-S. Lin, W.-M. Ni and I. Takagi, Large amplitude stationary solutions to a chemotaxis system,, J. Differential Equations, 72 (1998), 1. doi: 10.1016/0022-0396(88)90147-7. Google Scholar [26] J. Liu and Z.-A. Wang, Classical solutions and steady states of an attraction-repulsion chemotaxis in one dimension,, J. Biol. Dyn., 6 (2012), 31. doi: 10.1080/17513758.2011.571722. Google Scholar [27] W.-M. Ni, Diffusion, cross-diffusion, and theri spike-layer steady states,, Notice of the AMS, 45 (1998), 9. Google Scholar [28] L. Nirenberg, An extended interpolation inequality,, Ann. Scuola Norm. Sup. Pisa, 20 (1966), 733. Google Scholar [29] K. Osaki and A. Yagi, Finite dimensional attractors for one-dimensional Keller-Segel equations,, Funkcial. Ekvac., 44 (2001), 441. Google Scholar [30] A. J. Perumpanani and H. M. Byrne, Extracellular matrix concentration exerts selection pressure on invasive cells,, Eur. J. Cancer, 35 (1999), 1274. Google Scholar [31] A. J. Perumpanani, D. L. Simmons, A. J. H. Gearing, K. M. Miller, G. Ward, J. Norbury, M. Schneemann and J. A. Sherratt, Extracellular matrix-mediated chemotaxis can impede cell migration,, Proc. R. Soc. Lond. B, 265 (1998), 2347. Google Scholar [32] H. G. Othmer and A. Stevens, Aggregation, blowup and collapse: The ABC's of taxis in reinforced random walks,, SIAM J. Appl. Math., 57 (1997), 1044. doi: 10.1137/S0036139995288976. Google Scholar [33] B. D. Sleeman and H. A. Levine, Partial differential equations of chemotaxis and angiogenesis,, Math. Methods Appl. Sci., 24 (2001), 405. doi: 10.1002/mma.212. Google Scholar [34] Ch. Stinner and M. Winkler, Global weak solutions in a chemotaxis system with large singular sensitivity,, Nonlinear Analysis: Real World Applications, 12 (2011), 3727. doi: 10.1016/j.nonrwa.2011.07.006. Google Scholar [35] Y. Tao and Z.-A. Wang, Competing effects of attraction vs. repulsion in chemotaxis,, Math. Models Methods Appl. Sci., 23 (2013), 1. doi: 10.1142/S0218202512500443. Google Scholar [36] Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity,, J. Differential Equations, 252 (2012), 692. doi: 10.1016/j.jde.2011.08.019. Google Scholar [37] Z.-A. Wang and T. Hillen, Shock formation in a chemotaxis model,, Math. Methods. Appl. Sci., 31 (2008), 45. doi: 10.1002/mma.898. Google Scholar [38] Z.-A. Wang and K. Zhao, Global dynamics and diffusion limit of a repulsive chemotaxis model,, Comm. Pure and Appl. Anal., (). Google Scholar [39] M. Winkler, A critical exponent in a degenerate parabolic equation,, Math. Methods Appl. Sci., 25 (2002), 911. doi: 10.1002/mma.319. Google Scholar [40] M. Winkler, Global solutions in a fully parabolic chemotaxis system with singular sensitivity,, Math. Methods Appl. Sci., 34 (2011), 176. doi: 10.1002/mma.1346. Google Scholar [41] M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model,, J. Differential Equations, 248 (2010), 2889. doi: 10.1016/j.jde.2010.02.008. Google Scholar [42] D. Wrzosek, Long-time behaviour of solutions to a chemotaxis model with volume-filling effect,, Proceedings of the Royal Society of Edinburgy A, 136 (2006), 431. doi: 10.1017/S0308210500004649. Google Scholar [43] Y. Yang, H. Chen and W. Liu, On existence of global solutions and blow-up to a system of the reaction-diffusion equations modelling chemotaxis,, SIAM J. Math. Anal., 33 (2001), 763. doi: 10.1137/S0036141000337796. Google Scholar [44] Y. Yang, H. Chen, W. Liu and B. D. Sleeman, The solvability of some chemotaxis systems,, J. Diff. Eqn., 212 (2005), 432. doi: 10.1016/j.jde.2005.01.002. Google Scholar [45] M. Zhang and C. J. Zhu, Global existence of solutions to a hyperbolic-parabolic system,, Proc. Amer. Math. Soc., 135 (2007), 1017. doi: 10.1090/S0002-9939-06-08773-9. Google Scholar

show all references

##### References:
 [1] N. D. Alikakos, $L^p$ bounds of solutions of reaction-diffusion equations,, Comm. Partial Differential Equations, 4 (1979), 827. doi: 10.1080/03605307908820113. Google Scholar [2] F. Almgren and L. Wang, Mathematical existence of crystal growth with Gibbs-Thomson curvature effects,, J. Geom. Anal., 10 (2000), 1. doi: 10.1007/BF02921806. Google Scholar [3] P. Biler, Global solutions to some parabolic-elliptic systems of chemotaxis,, Adv. Math. Sci. Appl., 9 (1999), 347. Google Scholar [4] J. A. Carrillo, A. Jüngle, P. Markowich, G. Toscani and A. Unterreiter, Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities,, Monatsh. Math., 133 (2001), 1. doi: 10.1007/s006050170032. Google Scholar [5] T. Cieślak and P. Laurençot, Finite time blow-up for a one-dimensional quasilinear parabolic-parabolic chemotaxis system,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 437. doi: 10.1016/j.anihpc.2009.11.016. Google Scholar [6] T. Cieślak, P. Laurençot and C. Morales-Rodrigo, Global existence and convergence to steady-states in a chemorepulsion system,, in, 81 (2008), 105. doi: 10.4064/bc81-0-7. Google Scholar [7] L. C. Evans, "Partial Differential Equations,", AMS, (1998). Google Scholar [8] M. A. Fontelos, A. Friedman and B. Hu, Mathematical analysis of a model for the initiation of angiogenesis,, SIAM J. Math. Anal., 33 (2002), 1330. doi: 10.1137/S0036141001385046. Google Scholar [9] A. Friedman, "Partial Differential Equations,", Holt, (1969). Google Scholar [10] Y. Giga and H. Sohr, Abstract $L^p$ estimates for the Cauchy problem with applications to the Navier-Stokes equations in exterior domains,, J. Funct. Analysis, 102 (1991), 72. doi: 10.1016/0022-1236(91)90136-S. Google Scholar [11] D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Springer-Verlag, (1983). Google Scholar [12] J. Guo, J. X. Xiao, H. J. Zhao and C. J. Zhu, Global solutions to a hyperbolic-parabolic coupled system with large initial data,, Acta Math. Sci. Ser. B Engl. Ed., 29 (2009), 629. doi: 10.1016/S0252-9602(09)60059-X. Google Scholar [13] T. Hillen and K. Painter, A users' guide to PDE models for chemotaxis,, J. Math. Biol., 58 (2009), 183. doi: 10.1007/s00285-008-0201-3. Google Scholar [14] D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. I,, Jahresber. Deutsch. Math.- Verien., 105 (2003), 103. Google Scholar [15] E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instaility,, J. Theor. Biol., 26 (1970), 399. Google Scholar [16] E. F. Keller and L. A. Segel, Traveling bands of chemotactic bacteria: A theorectical analysis,, J. Theor. Biol., 26 (1971), 235. Google Scholar [17] O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasi-linear Equations of Parabolic Type,", AMS, (1968). Google Scholar [18] H. A. Levine and B. D. Sleeman, A system of reaction diffusion equations arising in the theory of reinforced random walks,, SIAM J. Appl. Math., 57 (1997), 683. doi: 10.1137/S0036139995291106. Google Scholar [19] D. Li, T. Li and K. Zhao, On a hyperbolic-parabolic system modeling chemotaxis,, Math. Models Methods Appl. Sci., 21 (2011), 1631. doi: 10.1142/S0218202511005519. Google Scholar [20] T. Li, R. H. Pan and K. Zhao, Global dynamics of a chemotaxis model on bounded domains with large data,, SIAM J. Appl. Math., 72 (2012), 417. doi: 10.1137/110829453. Google Scholar [21] T. Li and Z.-A. Wang, Nonlinear stability of traveling waves to a hyperbolic-parabolic system modeling chemotaxis,, SIAM J. Appl. Math., 70 (): 1522. doi: 10.1137/09075161X. Google Scholar [22] T. Li and Z.-A. Wang, Nonlinear stability of large amplitude viscous shock waves of a hyperbolic-parabolic system arising in chemotaxis,, Math. Models Methods Appl. Sci., 20 (2010), 1967. doi: 10.1142/S0218202510004830. Google Scholar [23] T. Li and Z.-A. Wang, Asymptotic nonlinear stability of traveling waves to conservation laws arising from chemotaxis,, J. Differential Equations, 250 (2011), 1310. doi: 10.1016/j.jde.2010.09.020. Google Scholar [24] G. M. Lieberman, "Second Order Parabolic Differential Equations,", World Scientific, (1996). Google Scholar [25] C.-S. Lin, W.-M. Ni and I. Takagi, Large amplitude stationary solutions to a chemotaxis system,, J. Differential Equations, 72 (1998), 1. doi: 10.1016/0022-0396(88)90147-7. Google Scholar [26] J. Liu and Z.-A. Wang, Classical solutions and steady states of an attraction-repulsion chemotaxis in one dimension,, J. Biol. Dyn., 6 (2012), 31. doi: 10.1080/17513758.2011.571722. Google Scholar [27] W.-M. Ni, Diffusion, cross-diffusion, and theri spike-layer steady states,, Notice of the AMS, 45 (1998), 9. Google Scholar [28] L. Nirenberg, An extended interpolation inequality,, Ann. Scuola Norm. Sup. Pisa, 20 (1966), 733. Google Scholar [29] K. Osaki and A. Yagi, Finite dimensional attractors for one-dimensional Keller-Segel equations,, Funkcial. Ekvac., 44 (2001), 441. Google Scholar [30] A. J. Perumpanani and H. M. Byrne, Extracellular matrix concentration exerts selection pressure on invasive cells,, Eur. J. Cancer, 35 (1999), 1274. Google Scholar [31] A. J. Perumpanani, D. L. Simmons, A. J. H. Gearing, K. M. Miller, G. Ward, J. Norbury, M. Schneemann and J. A. Sherratt, Extracellular matrix-mediated chemotaxis can impede cell migration,, Proc. R. Soc. Lond. B, 265 (1998), 2347. Google Scholar [32] H. G. Othmer and A. Stevens, Aggregation, blowup and collapse: The ABC's of taxis in reinforced random walks,, SIAM J. Appl. Math., 57 (1997), 1044. doi: 10.1137/S0036139995288976. Google Scholar [33] B. D. Sleeman and H. A. Levine, Partial differential equations of chemotaxis and angiogenesis,, Math. Methods Appl. Sci., 24 (2001), 405. doi: 10.1002/mma.212. Google Scholar [34] Ch. Stinner and M. Winkler, Global weak solutions in a chemotaxis system with large singular sensitivity,, Nonlinear Analysis: Real World Applications, 12 (2011), 3727. doi: 10.1016/j.nonrwa.2011.07.006. Google Scholar [35] Y. Tao and Z.-A. Wang, Competing effects of attraction vs. repulsion in chemotaxis,, Math. Models Methods Appl. Sci., 23 (2013), 1. doi: 10.1142/S0218202512500443. Google Scholar [36] Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity,, J. Differential Equations, 252 (2012), 692. doi: 10.1016/j.jde.2011.08.019. Google Scholar [37] Z.-A. Wang and T. Hillen, Shock formation in a chemotaxis model,, Math. Methods. Appl. Sci., 31 (2008), 45. doi: 10.1002/mma.898. Google Scholar [38] Z.-A. Wang and K. Zhao, Global dynamics and diffusion limit of a repulsive chemotaxis model,, Comm. Pure and Appl. Anal., (). Google Scholar [39] M. Winkler, A critical exponent in a degenerate parabolic equation,, Math. Methods Appl. Sci., 25 (2002), 911. doi: 10.1002/mma.319. Google Scholar [40] M. Winkler, Global solutions in a fully parabolic chemotaxis system with singular sensitivity,, Math. Methods Appl. Sci., 34 (2011), 176. doi: 10.1002/mma.1346. Google Scholar [41] M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model,, J. Differential Equations, 248 (2010), 2889. doi: 10.1016/j.jde.2010.02.008. Google Scholar [42] D. Wrzosek, Long-time behaviour of solutions to a chemotaxis model with volume-filling effect,, Proceedings of the Royal Society of Edinburgy A, 136 (2006), 431. doi: 10.1017/S0308210500004649. Google Scholar [43] Y. Yang, H. Chen and W. Liu, On existence of global solutions and blow-up to a system of the reaction-diffusion equations modelling chemotaxis,, SIAM J. Math. Anal., 33 (2001), 763. doi: 10.1137/S0036141000337796. Google Scholar [44] Y. Yang, H. Chen, W. Liu and B. D. Sleeman, The solvability of some chemotaxis systems,, J. Diff. Eqn., 212 (2005), 432. doi: 10.1016/j.jde.2005.01.002. Google Scholar [45] M. Zhang and C. J. Zhu, Global existence of solutions to a hyperbolic-parabolic system,, Proc. Amer. Math. Soc., 135 (2007), 1017. doi: 10.1090/S0002-9939-06-08773-9. Google Scholar
 [1] Youshan Tao. Global dynamics in a higher-dimensional repulsion chemotaxis model with nonlinear sensitivity. Discrete & Continuous Dynamical Systems - B, 2013, 18 (10) : 2705-2722. doi: 10.3934/dcdsb.2013.18.2705 [2] Qi Wang. Boundary spikes of a Keller-Segel chemotaxis system with saturated logarithmic sensitivity. Discrete & Continuous Dynamical Systems - B, 2015, 20 (4) : 1231-1250. doi: 10.3934/dcdsb.2015.20.1231 [3] Sainan Wu, Junping Shi, Boying Wu. Global existence of solutions to an attraction-repulsion chemotaxis model with growth. Communications on Pure & Applied Analysis, 2017, 16 (3) : 1037-1058. doi: 10.3934/cpaa.2017050 [4] Abelardo Duarte-Rodríguez, Lucas C. F. Ferreira, Élder J. Villamizar-Roa. Global existence for an attraction-repulsion chemotaxis fluid model with logistic source. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 423-447. doi: 10.3934/dcdsb.2018180 [5] Qi Wang. Global solutions of a Keller--Segel system with saturated logarithmic sensitivity function. Communications on Pure & Applied Analysis, 2015, 14 (2) : 383-396. doi: 10.3934/cpaa.2015.14.383 [6] Alejo Barrio Blaya, Víctor Jiménez López. On the relations between positive Lyapunov exponents, positive entropy, and sensitivity for interval maps. Discrete & Continuous Dynamical Systems - A, 2012, 32 (2) : 433-466. doi: 10.3934/dcds.2012.32.433 [7] Wei Wang, Yan Li, Hao Yu. Global boundedness in higher dimensions for a fully parabolic chemotaxis system with singular sensitivity. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3663-3669. doi: 10.3934/dcdsb.2017147 [8] Zhi-An Wang, Kun Zhao. Global dynamics and diffusion limit of a one-dimensional repulsive chemotaxis model. Communications on Pure & Applied Analysis, 2013, 12 (6) : 3027-3046. doi: 10.3934/cpaa.2013.12.3027 [9] Ke Lin, Chunlai Mu. Global dynamics in a fully parabolic chemotaxis system with logistic source. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 5025-5046. doi: 10.3934/dcds.2016018 [10] Hai-Yang Jin, Tian Xiang. Repulsion effects on boundedness in a quasilinear attraction-repulsion chemotaxis model in higher dimensions. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3071-3085. doi: 10.3934/dcdsb.2017197 [11] Zhanyuan Hou, Stephen Baigent. Global stability and repulsion in autonomous Kolmogorov systems. Communications on Pure & Applied Analysis, 2015, 14 (3) : 1205-1238. doi: 10.3934/cpaa.2015.14.1205 [12] Sachiko Ishida. Global existence and boundedness for chemotaxis-Navier-Stokes systems with position-dependent sensitivity in 2D bounded domains. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3463-3482. doi: 10.3934/dcds.2015.35.3463 [13] Jaewook Ahn, Kyungkeun Kang. On a Keller-Segel system with logarithmic sensitivity and non-diffusive chemical. Discrete & Continuous Dynamical Systems - A, 2014, 34 (12) : 5165-5179. doi: 10.3934/dcds.2014.34.5165 [14] Prosenjit Roy. On attainability of Moser-Trudinger inequality with logarithmic weights in higher dimensions. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 5207-5222. doi: 10.3934/dcds.2019212 [15] Jinliang Wang, Jiying Lang, Xianning Liu. Global dynamics for viral infection model with Beddington-DeAngelis functional response and an eclipse stage of infected cells. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 3215-3233. doi: 10.3934/dcdsb.2015.20.3215 [16] Sze-Bi Hsu, Tzy-Wei Hwang, Yang Kuang. Global dynamics of a Predator-Prey model with Hassell-Varley Type functional response. Discrete & Continuous Dynamical Systems - B, 2008, 10 (4) : 857-871. doi: 10.3934/dcdsb.2008.10.857 [17] Xinyu Tu, Chunlai Mu, Pan Zheng, Ke Lin. Global dynamics in a two-species chemotaxis-competition system with two signals. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3617-3636. doi: 10.3934/dcds.2018156 [18] Yilong Wang, Zhaoyin Xiang. Boundedness in a quasilinear 2D parabolic-parabolic attraction-repulsion chemotaxis system. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1953-1973. doi: 10.3934/dcdsb.2016031 [19] Shijie Shi, Zhengrong Liu, Hai-Yang Jin. Boundedness and large time behavior of an attraction-repulsion chemotaxis model with logistic source. Kinetic & Related Models, 2017, 10 (3) : 855-878. doi: 10.3934/krm.2017034 [20] Rachidi B. Salako. Traveling waves of a full parabolic attraction-repulsion chemotaxis system with logistic source. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 5945-5973. doi: 10.3934/dcds.2019260

2018 Impact Factor: 1.008

## Metrics

• PDF downloads (12)
• HTML views (0)
• Cited by (2)

## Other articlesby authors

• on AIMS
• on Google Scholar

[Back to Top]