November  2013, 18(9): 2331-2353. doi: 10.3934/dcdsb.2013.18.2331

On the dynamics of two-consumers-one-resource competing systems with Beddington-DeAngelis functional response

1. 

Department of Mathematics and The National Center for Theoretical Science, National Tsing-Hua University, Hsinchu 30013, Taiwan

2. 

Department of Mathematics, University of Miami, Coral Gables, FL 33124-4250, United States

3. 

Department of Mathematics, Tamkang University, Tamsui, Taipei County 25137

Received  June 2013 Revised  August 2013 Published  September 2013

In this paper we study a two-consumers-one-resource competing system with Beddington-DeAngelis functional response. The two consumers competing for a renewable resource have intraspecific competition among their own populations. Firstly we investigate the extinction and uniform persistence of the predators, local and global stability of the equilibria, and existence of Hopf bifurcation at the positive equilibrium. Then we compare the dynamic behavior of the system with and without interference effects. Analytically we study the competition of two identically species with different interference effects. We also study the relaxation oscillation in the case of interference effects. Finally we present extensive numerical simulations to understand the interference effects on the competition outcomes.
Citation: Sze-Bi Hsu, Shigui Ruan, Ting-Hui Yang. On the dynamics of two-consumers-one-resource competing systems with Beddington-DeAngelis functional response. Discrete & Continuous Dynamical Systems - B, 2013, 18 (9) : 2331-2353. doi: 10.3934/dcdsb.2013.18.2331
References:
[1]

R. A. Armstrong and R. McGehee, Competitive exclusion,, The American Naturalist, 115 (1980), 151. doi: 10.1086/283553.

[2]

J. R. Beddington, Mutual interference between parasites or predators and its effect on searching efficiency,, Journal of Animal Ecology, 44 (1975), 331. doi: 10.2307/3866.

[3]

G. J. Butler and P. Waltman, Persistence in dynamical systems,, Journal of Differential Equations, 63 (1986), 255. doi: 10.1016/0022-0396(86)90049-5.

[4]

G. J. Butler, H. I. Freedman and P. Waltman, Uniformly persistent systems,, Proceedings of the American Mathematical Society, 96 (1986), 425. doi: 10.1090/S0002-9939-1986-0822433-4.

[5]

G. J. Butler and P. Waltman, Bifurcation from a limit cycle in a two predator-one prey ecosystem modeled on a chemostat,, Journal of Mathematical Biology, 12 (1981), 295. doi: 10.1007/BF00276918.

[6]

R. S. Cantrell and C. Cosner, On the dynamics of predator-prey models with the Beddington-DeAngelis functional response,, Journal of Mathematical Analysis and Applications, 257 (2001), 206. doi: 10.1006/jmaa.2000.7343.

[7]

R. S. Cantrell, C. Cosner and S. Ruan, Intraspecific interference and consumer-resource dynamics,, Discrete and Continuous Dynamical Systems - B, 4 (2004), 527. doi: 10.3934/dcdsb.2004.4.527.

[8]

D. L. DeAngelis, R. A. Goldstein and R. V. O'Neill, A model for trophic interaction,, Ecology, 56 (1975), 881. doi: 10.2307/1936298.

[9]

H. I. Freedman, S. Ruan and M. Tang, Uniform persistence and flows near a closed positively invariant set,, Journal of Dynamics and Differential Equations, 6 (1994), 583. doi: 10.1007/BF02218848.

[10]

S. B. Hsu, Limiting behavior for competing species,, SIAM Journal on Applied Mathematics, 34 (1978), 760. doi: 10.1137/0134064.

[11]

S. B. Hsu, A survey of constructing Lyapunov functions for mathematical models in population biology,, Taiwanese Journal of Mathematics, 9 (2005), 151.

[12]

S. B. Hsu, S. Hubbell, and P. Waltman, A mathematical theory for single-nutrient competition in continuous cultures of micro-organisms,, SIAM Journal on Applied Mathematics, 32 (1977), 366. doi: 10.1137/0132030.

[13]

S. B. Hsu, S. P. Hubbell and P. Waltman, A contribution to the theory of competing predators,, Ecological Monographs, 48 (1978), 337.

[14]

S. B. Hsu, S. P. Hubbell and P. Waltman, Competing predators,, SIAM Journal on Applied Mathematics, 35 (1978), 617. doi: 10.1137/0135051.

[15]

G. Huisman and R. J. De Boer, A formal derivation of the "Beddington" functional response,, Journal of Theoretical Biology, 185 (1997), 389. doi: 10.1006/jtbi.1996.0318.

[16]

T.-W. Hwang, Global analysis of the predator-prey system with Beddington-DeAngelis functional response,, Journal of Mathematical Analysis and Applications, 281 (2003), 395. doi: 10.1016/S0022-247X(02)00395-5.

[17]

T.-W. Hwang, Uniqueness of limit cycles of the predator-prey system with Beddington-DeAngelis functional response,, Journal of Mathematical Analysis and Applications, 290 (2004), 113. doi: 10.1016/j.jmaa.2003.09.073.

[18]

J. P. Keener, Oscillatory coexistence in the chemostat: A codimension two unfolding,, SIAM Journal on Applied Mathematics, 43 (1983), 1005. doi: 10.1137/0143066.

[19]

W. Liu, D. Xiao and Y. Yi, Relaxation oscillations in a class of predator-prey systems,, Journal of Differential Equations, 188 (2003), 306. doi: 10.1016/S0022-0396(02)00076-1.

[20]

S. Muratori and S. Rinaldi, Remarks on competitive coexistence,, SIAM Journal on Applied Mathematics, 49 (1989), 1462. doi: 10.1137/0149088.

[21]

H. L. Smith, The interaction of steady state and Hopf bifurcations in a two-predator-one-prey competition model,, SIAM Journal on Applied Mathematics, 42 (1982), 27. doi: 10.1137/0142003.

[22]

H. L. Smith and H. R. Thieme, "Dynamical Systems and Population Persistence,", Vol. 118 of Graduate Studies in Mathematics, (2011).

show all references

References:
[1]

R. A. Armstrong and R. McGehee, Competitive exclusion,, The American Naturalist, 115 (1980), 151. doi: 10.1086/283553.

[2]

J. R. Beddington, Mutual interference between parasites or predators and its effect on searching efficiency,, Journal of Animal Ecology, 44 (1975), 331. doi: 10.2307/3866.

[3]

G. J. Butler and P. Waltman, Persistence in dynamical systems,, Journal of Differential Equations, 63 (1986), 255. doi: 10.1016/0022-0396(86)90049-5.

[4]

G. J. Butler, H. I. Freedman and P. Waltman, Uniformly persistent systems,, Proceedings of the American Mathematical Society, 96 (1986), 425. doi: 10.1090/S0002-9939-1986-0822433-4.

[5]

G. J. Butler and P. Waltman, Bifurcation from a limit cycle in a two predator-one prey ecosystem modeled on a chemostat,, Journal of Mathematical Biology, 12 (1981), 295. doi: 10.1007/BF00276918.

[6]

R. S. Cantrell and C. Cosner, On the dynamics of predator-prey models with the Beddington-DeAngelis functional response,, Journal of Mathematical Analysis and Applications, 257 (2001), 206. doi: 10.1006/jmaa.2000.7343.

[7]

R. S. Cantrell, C. Cosner and S. Ruan, Intraspecific interference and consumer-resource dynamics,, Discrete and Continuous Dynamical Systems - B, 4 (2004), 527. doi: 10.3934/dcdsb.2004.4.527.

[8]

D. L. DeAngelis, R. A. Goldstein and R. V. O'Neill, A model for trophic interaction,, Ecology, 56 (1975), 881. doi: 10.2307/1936298.

[9]

H. I. Freedman, S. Ruan and M. Tang, Uniform persistence and flows near a closed positively invariant set,, Journal of Dynamics and Differential Equations, 6 (1994), 583. doi: 10.1007/BF02218848.

[10]

S. B. Hsu, Limiting behavior for competing species,, SIAM Journal on Applied Mathematics, 34 (1978), 760. doi: 10.1137/0134064.

[11]

S. B. Hsu, A survey of constructing Lyapunov functions for mathematical models in population biology,, Taiwanese Journal of Mathematics, 9 (2005), 151.

[12]

S. B. Hsu, S. Hubbell, and P. Waltman, A mathematical theory for single-nutrient competition in continuous cultures of micro-organisms,, SIAM Journal on Applied Mathematics, 32 (1977), 366. doi: 10.1137/0132030.

[13]

S. B. Hsu, S. P. Hubbell and P. Waltman, A contribution to the theory of competing predators,, Ecological Monographs, 48 (1978), 337.

[14]

S. B. Hsu, S. P. Hubbell and P. Waltman, Competing predators,, SIAM Journal on Applied Mathematics, 35 (1978), 617. doi: 10.1137/0135051.

[15]

G. Huisman and R. J. De Boer, A formal derivation of the "Beddington" functional response,, Journal of Theoretical Biology, 185 (1997), 389. doi: 10.1006/jtbi.1996.0318.

[16]

T.-W. Hwang, Global analysis of the predator-prey system with Beddington-DeAngelis functional response,, Journal of Mathematical Analysis and Applications, 281 (2003), 395. doi: 10.1016/S0022-247X(02)00395-5.

[17]

T.-W. Hwang, Uniqueness of limit cycles of the predator-prey system with Beddington-DeAngelis functional response,, Journal of Mathematical Analysis and Applications, 290 (2004), 113. doi: 10.1016/j.jmaa.2003.09.073.

[18]

J. P. Keener, Oscillatory coexistence in the chemostat: A codimension two unfolding,, SIAM Journal on Applied Mathematics, 43 (1983), 1005. doi: 10.1137/0143066.

[19]

W. Liu, D. Xiao and Y. Yi, Relaxation oscillations in a class of predator-prey systems,, Journal of Differential Equations, 188 (2003), 306. doi: 10.1016/S0022-0396(02)00076-1.

[20]

S. Muratori and S. Rinaldi, Remarks on competitive coexistence,, SIAM Journal on Applied Mathematics, 49 (1989), 1462. doi: 10.1137/0149088.

[21]

H. L. Smith, The interaction of steady state and Hopf bifurcations in a two-predator-one-prey competition model,, SIAM Journal on Applied Mathematics, 42 (1982), 27. doi: 10.1137/0142003.

[22]

H. L. Smith and H. R. Thieme, "Dynamical Systems and Population Persistence,", Vol. 118 of Graduate Studies in Mathematics, (2011).

[1]

Haiyin Li, Yasuhiro Takeuchi. Dynamics of the density dependent and nonautonomous predator-prey system with Beddington-DeAngelis functional response. Discrete & Continuous Dynamical Systems - B, 2015, 20 (4) : 1117-1134. doi: 10.3934/dcdsb.2015.20.1117

[2]

Walid Abid, Radouane Yafia, M.A. Aziz-Alaoui, Habib Bouhafa, Azgal Abichou. Global dynamics on a circular domain of a diffusion predator-prey model with modified Leslie-Gower and Beddington-DeAngelis functional type. Evolution Equations & Control Theory, 2015, 4 (2) : 115-129. doi: 10.3934/eect.2015.4.115

[3]

Seong Lee, Inkyung Ahn. Diffusive predator-prey models with stage structure on prey and beddington-deangelis functional responses. Communications on Pure & Applied Analysis, 2017, 16 (2) : 427-442. doi: 10.3934/cpaa.2017022

[4]

Eric Avila-Vales, Gerardo García-Almeida, Erika Rivero-Esquivel. Bifurcation and spatiotemporal patterns in a Bazykin predator-prey model with self and cross diffusion and Beddington-DeAngelis response. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 717-740. doi: 10.3934/dcdsb.2017035

[5]

Yu Yang, Shigui Ruan, Dongmei Xiao. Global stability of an age-structured virus dynamics model with Beddington-DeAngelis infection function. Mathematical Biosciences & Engineering, 2015, 12 (4) : 859-877. doi: 10.3934/mbe.2015.12.859

[6]

Zhong Li, Maoan Han, Fengde Chen. Global stability of a predator-prey system with stage structure and mutual interference. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 173-187. doi: 10.3934/dcdsb.2014.19.173

[7]

Sze-Bi Hsu, Junping Shi. Relaxation oscillation profile of limit cycle in predator-prey system. Discrete & Continuous Dynamical Systems - B, 2009, 11 (4) : 893-911. doi: 10.3934/dcdsb.2009.11.893

[8]

Jinliang Wang, Jiying Lang, Xianning Liu. Global dynamics for viral infection model with Beddington-DeAngelis functional response and an eclipse stage of infected cells. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 3215-3233. doi: 10.3934/dcdsb.2015.20.3215

[9]

Miljana JovanoviĆ, Marija KrstiĆ. Extinction in stochastic predator-prey population model with Allee effect on prey. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2651-2667. doi: 10.3934/dcdsb.2017129

[10]

Leonid Braverman, Elena Braverman. Stability analysis and bifurcations in a diffusive predator-prey system. Conference Publications, 2009, 2009 (Special) : 92-100. doi: 10.3934/proc.2009.2009.92

[11]

Xiaoyuan Chang, Junjie Wei. Stability and Hopf bifurcation in a diffusive predator-prey system incorporating a prey refuge. Mathematical Biosciences & Engineering, 2013, 10 (4) : 979-996. doi: 10.3934/mbe.2013.10.979

[12]

Jing-An Cui, Xinyu Song. Permanence of predator-prey system with stage structure. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 547-554. doi: 10.3934/dcdsb.2004.4.547

[13]

Dongmei Xiao, Kate Fang Zhang. Multiple bifurcations of a predator-prey system. Discrete & Continuous Dynamical Systems - B, 2007, 8 (2) : 417-433. doi: 10.3934/dcdsb.2007.8.417

[14]

H. W. Broer, K. Saleh, V. Naudot, R. Roussarie. Dynamics of a predator-prey model with non-monotonic response function. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 221-251. doi: 10.3934/dcds.2007.18.221

[15]

Hongmei Cheng, Rong Yuan. Existence and stability of traveling waves for Leslie-Gower predator-prey system with nonlocal diffusion. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5433-5454. doi: 10.3934/dcds.2017236

[16]

S. Nakaoka, Y. Saito, Y. Takeuchi. Stability, delay, and chaotic behavior in a Lotka-Volterra predator-prey system. Mathematical Biosciences & Engineering, 2006, 3 (1) : 173-187. doi: 10.3934/mbe.2006.3.173

[17]

Shanshan Chen, Jianshe Yu. Stability and bifurcation on predator-prey systems with nonlocal prey competition. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 43-62. doi: 10.3934/dcds.2018002

[18]

Yun Kang, Sourav Kumar Sasmal, Amiya Ranjan Bhowmick, Joydev Chattopadhyay. Dynamics of a predator-prey system with prey subject to Allee effects and disease. Mathematical Biosciences & Engineering, 2014, 11 (4) : 877-918. doi: 10.3934/mbe.2014.11.877

[19]

Xinyu Song, Liming Cai, U. Neumann. Ratio-dependent predator-prey system with stage structure for prey. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 747-758. doi: 10.3934/dcdsb.2004.4.747

[20]

Renji Han, Binxiang Dai, Lin Wang. Delay induced spatiotemporal patterns in a diffusive intraguild predation model with Beddington-DeAngelis functional response. Mathematical Biosciences & Engineering, 2018, 15 (3) : 595-627. doi: 10.3934/mbe.2018027

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]