January  2013, 18(1): 223-236. doi: 10.3934/dcdsb.2013.18.223

$\omega$-limit sets for porous medium equation with initial data in some weighted spaces

1. 

School of Math. Stat., Chongqing Three Gorges Univ., Wanzhou 404000, China

2. 

School of Math. Sci., South China Normal Univ., Guangzhou 510631, China, China

Received  May 2012 Revised  August 2012 Published  September 2012

We discuss the $\omega$-limit set for the Cauchy problem of the porous medium equation with initial data in some weighted spaces. Exactly, we show that there exists some relationship between the $\omega$-limit set of the rescaled initial data and the $\omega$-limit set of the spatially rescaled version of solutions. We also give some applications of such a relationship.
Citation: Liangwei Wang, Jingxue Yin, Chunhua Jin. $\omega$-limit sets for porous medium equation with initial data in some weighted spaces. Discrete & Continuous Dynamical Systems - B, 2013, 18 (1) : 223-236. doi: 10.3934/dcdsb.2013.18.223
References:
[1]

S. Kamenomostskaya, The asymptotic behaviour of the solution of the filtration equation,, Israel J. Math., 14 (1973), 76. Google Scholar

[2]

Ph. Bénilan, "Opérateurs Accrétifs et Semi-Groupes dans les Espaces $L^p$ ($1\leq p \leq\infty$),", France-Japan Seminar, (1976). Google Scholar

[3]

L. Véron, Coercivité et propriétés régularisantes des semi-groupes non linéaires dans les espaces de Banach,, Ann. Fac. Sci. Toulouse, 1 (1979), 171. doi: 10.5802/afst.535. Google Scholar

[4]

N. Alikakos and R. Rostamian, Large time behavior of solutions of Neumann boundary value problem for the porous medium equation,, Indiana Univ. Math. J., 30 (1981), 749. doi: 10.1512/iumj.1981.30.30056. Google Scholar

[5]

S. Kamin and L. A. Peletier, Large time behaviour of solutions of the porous media equation with absorption,, Israel J. Math., 55 (1986), 129. Google Scholar

[6]

F. Quirós and J. L. Vazquez, Asymptotic behaviour of the porous media equation in an exterior domain,, Ann. Scuola Normale Sup. Pisa, 28 (1999), 183. Google Scholar

[7]

J. A. Carrillo and K. Fellner, Long-time asymptotics via entropy methods for diffusion dominated equations,, Asymptotic Analysis, 42 (2005), 29. Google Scholar

[8]

G. Reyes and J. L. Vázquez, Long time behavior for the inhomogeneous PME in a medium with slowly decaying density,, Commun. Pure Appl. Anal., 8 (2009), 493. Google Scholar

[9]

A. Friedman and S. Kamin, The asymptotic behavior of gas in an N-dimensional porous medium,, Trans. Amer. Math. Soc., 262 (1980), 551. Google Scholar

[10]

S. Kamin and J. L. Vázquez, Fundamental solutions and asymptotic behaviour for the p-Laplacian equation,, Rev. Mat. Iberoamericana, 4 (1988), 339. Google Scholar

[11]

J. L. Vázquez, Asymptotic behaviour for the porous medium equation posed in the whole space,, J. Evol. Equ., 3 (2003), 67. Google Scholar

[12]

N. Alikakos and R. Rostamian, On the uniformization of the solutions of the porous medium equation in $\mathbbR^N$,, IsraelJ. Math., 47 (1984), 270. Google Scholar

[13]

J. L. Vázquez and E. Zuazua, Complexity of large time behaviour of evolution equations with bounded data,, Chin. Ann. Math. Ser. B, 23 (2002), 293. Google Scholar

[14]

T. Cazenave, F. Dickstein and F. B. Weissler, Universal solutions of the heat equation on $\mathbbR^N$,, Discrete Contin. Dyn. Sys., 9 (2003), 1105. Google Scholar

[15]

T. Cazenave, F. Dickstein and F. B. Weissler, Universal solutions of a nonlinear heat equation on $\mathbbR^N$,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 5 (2003), 77. Google Scholar

[16]

T. Cazenave, F. Dickstein and F. B. Weissler, Chaotic behavior of solutions of the Navier-Stokes system in $\mathbbR^N$,, Adv. Differ. Equations, 10 (2005), 361. Google Scholar

[17]

J. A. Carrillo and J. L. Vázquez, Asymptotic complexity infiltration equations,, J. Evol. Equ., 7 (2007), 471. Google Scholar

[18]

T. Cazenave, F. Dickstein and F. B. Weissler, Nonparabolic asymptotic limits of solutions of the heat equation on$\mathbbR^N$,, J. Dyn. Diff. Eqns., 19 (2007), 789. Google Scholar

[19]

J. X. Yin, L. W. Wang and R. Huang, Complexity of asymptotic behavior of solutions for the porous medium equations,, Acta Mathematica Scientia, 30 (2010), 1865. Google Scholar

[20]

J. X. Yin, L. W. Wang and R. Huang, Complexity of a symptotic behavior of the porous medium equation in $\mathbbR^N$,, J. Evol. Equ., 11 (2011), 429. doi: 10.1007/s00028-010-0097-4. Google Scholar

[21]

E. DiBenedetto, Continuity of weak solutions to ageneral porous media equation,, Indiana Univ. Math. J., 32 (1983), 83. Google Scholar

[22]

P. Bénilan, M. G. Crandall and M. Pierre, Solutions of the porousmedium in $\mathbbR^N$ under optimal conditions on the initialvalues,, Indiana Univ. Math. J., 33 (1984), 51. Google Scholar

[23]

E. DiBenedetto, "Degenerate Parabolic Equations,", New York, (1993). Google Scholar

[24]

J. L. Vázquez, "The Porous Medium Equation: MathematicalTheory, Oxford Mathematical Monographs,", Oxford/New York, (2008). Google Scholar

[25]

J. L. Vázquez, "Smoothing and Decay Estimates for Nonlinear Parabolic Equations: Equations of Porous Medium Type,", Oxford University Press, (2006). Google Scholar

[26]

L. A. Caffarelli, J. L. Vázquez and N. I. Wolanski, Lipschitz continuity of solutions and interfaces of the N-dimensional porous medium equation,, Indiana Univ. Math. J., 33 (1984), 51. Google Scholar

[27]

J. N. Zhao and H. J. Yuan, Lipschitz continuity of solutions and interfaces of the evolution $p$-Laplacian equation,, Northeast. Math. J., 8 (1992), 21. Google Scholar

[28]

T. Cazenave, F. Dickstein, M. Escobedo and F. B. Weissler, Self-similar solutions of a nonlinear heat equation,, J. Math. Sci. Univ. Tokyo, 8 (2001), 501. Google Scholar

show all references

References:
[1]

S. Kamenomostskaya, The asymptotic behaviour of the solution of the filtration equation,, Israel J. Math., 14 (1973), 76. Google Scholar

[2]

Ph. Bénilan, "Opérateurs Accrétifs et Semi-Groupes dans les Espaces $L^p$ ($1\leq p \leq\infty$),", France-Japan Seminar, (1976). Google Scholar

[3]

L. Véron, Coercivité et propriétés régularisantes des semi-groupes non linéaires dans les espaces de Banach,, Ann. Fac. Sci. Toulouse, 1 (1979), 171. doi: 10.5802/afst.535. Google Scholar

[4]

N. Alikakos and R. Rostamian, Large time behavior of solutions of Neumann boundary value problem for the porous medium equation,, Indiana Univ. Math. J., 30 (1981), 749. doi: 10.1512/iumj.1981.30.30056. Google Scholar

[5]

S. Kamin and L. A. Peletier, Large time behaviour of solutions of the porous media equation with absorption,, Israel J. Math., 55 (1986), 129. Google Scholar

[6]

F. Quirós and J. L. Vazquez, Asymptotic behaviour of the porous media equation in an exterior domain,, Ann. Scuola Normale Sup. Pisa, 28 (1999), 183. Google Scholar

[7]

J. A. Carrillo and K. Fellner, Long-time asymptotics via entropy methods for diffusion dominated equations,, Asymptotic Analysis, 42 (2005), 29. Google Scholar

[8]

G. Reyes and J. L. Vázquez, Long time behavior for the inhomogeneous PME in a medium with slowly decaying density,, Commun. Pure Appl. Anal., 8 (2009), 493. Google Scholar

[9]

A. Friedman and S. Kamin, The asymptotic behavior of gas in an N-dimensional porous medium,, Trans. Amer. Math. Soc., 262 (1980), 551. Google Scholar

[10]

S. Kamin and J. L. Vázquez, Fundamental solutions and asymptotic behaviour for the p-Laplacian equation,, Rev. Mat. Iberoamericana, 4 (1988), 339. Google Scholar

[11]

J. L. Vázquez, Asymptotic behaviour for the porous medium equation posed in the whole space,, J. Evol. Equ., 3 (2003), 67. Google Scholar

[12]

N. Alikakos and R. Rostamian, On the uniformization of the solutions of the porous medium equation in $\mathbbR^N$,, IsraelJ. Math., 47 (1984), 270. Google Scholar

[13]

J. L. Vázquez and E. Zuazua, Complexity of large time behaviour of evolution equations with bounded data,, Chin. Ann. Math. Ser. B, 23 (2002), 293. Google Scholar

[14]

T. Cazenave, F. Dickstein and F. B. Weissler, Universal solutions of the heat equation on $\mathbbR^N$,, Discrete Contin. Dyn. Sys., 9 (2003), 1105. Google Scholar

[15]

T. Cazenave, F. Dickstein and F. B. Weissler, Universal solutions of a nonlinear heat equation on $\mathbbR^N$,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 5 (2003), 77. Google Scholar

[16]

T. Cazenave, F. Dickstein and F. B. Weissler, Chaotic behavior of solutions of the Navier-Stokes system in $\mathbbR^N$,, Adv. Differ. Equations, 10 (2005), 361. Google Scholar

[17]

J. A. Carrillo and J. L. Vázquez, Asymptotic complexity infiltration equations,, J. Evol. Equ., 7 (2007), 471. Google Scholar

[18]

T. Cazenave, F. Dickstein and F. B. Weissler, Nonparabolic asymptotic limits of solutions of the heat equation on$\mathbbR^N$,, J. Dyn. Diff. Eqns., 19 (2007), 789. Google Scholar

[19]

J. X. Yin, L. W. Wang and R. Huang, Complexity of asymptotic behavior of solutions for the porous medium equations,, Acta Mathematica Scientia, 30 (2010), 1865. Google Scholar

[20]

J. X. Yin, L. W. Wang and R. Huang, Complexity of a symptotic behavior of the porous medium equation in $\mathbbR^N$,, J. Evol. Equ., 11 (2011), 429. doi: 10.1007/s00028-010-0097-4. Google Scholar

[21]

E. DiBenedetto, Continuity of weak solutions to ageneral porous media equation,, Indiana Univ. Math. J., 32 (1983), 83. Google Scholar

[22]

P. Bénilan, M. G. Crandall and M. Pierre, Solutions of the porousmedium in $\mathbbR^N$ under optimal conditions on the initialvalues,, Indiana Univ. Math. J., 33 (1984), 51. Google Scholar

[23]

E. DiBenedetto, "Degenerate Parabolic Equations,", New York, (1993). Google Scholar

[24]

J. L. Vázquez, "The Porous Medium Equation: MathematicalTheory, Oxford Mathematical Monographs,", Oxford/New York, (2008). Google Scholar

[25]

J. L. Vázquez, "Smoothing and Decay Estimates for Nonlinear Parabolic Equations: Equations of Porous Medium Type,", Oxford University Press, (2006). Google Scholar

[26]

L. A. Caffarelli, J. L. Vázquez and N. I. Wolanski, Lipschitz continuity of solutions and interfaces of the N-dimensional porous medium equation,, Indiana Univ. Math. J., 33 (1984), 51. Google Scholar

[27]

J. N. Zhao and H. J. Yuan, Lipschitz continuity of solutions and interfaces of the evolution $p$-Laplacian equation,, Northeast. Math. J., 8 (1992), 21. Google Scholar

[28]

T. Cazenave, F. Dickstein, M. Escobedo and F. B. Weissler, Self-similar solutions of a nonlinear heat equation,, J. Math. Sci. Univ. Tokyo, 8 (2001), 501. Google Scholar

[1]

Guillermo Reyes, Juan-Luis Vázquez. The Cauchy problem for the inhomogeneous porous medium equation. Networks & Heterogeneous Media, 2006, 1 (2) : 337-351. doi: 10.3934/nhm.2006.1.337

[2]

Luis Caffarelli, Juan-Luis Vázquez. Asymptotic behaviour of a porous medium equation with fractional diffusion. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1393-1404. doi: 10.3934/dcds.2011.29.1393

[3]

Changjing Zhuge, Xiaojuan Sun, Jinzhi Lei. On positive solutions and the Omega limit set for a class of delay differential equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (9) : 2487-2503. doi: 10.3934/dcdsb.2013.18.2487

[4]

Ansgar Jüngel, Ingrid Violet. Mixed entropy estimates for the porous-medium equation with convection. Discrete & Continuous Dynamical Systems - B, 2009, 12 (4) : 783-796. doi: 10.3934/dcdsb.2009.12.783

[5]

Jing Li, Yifu Wang, Jingxue Yin. Non-sharp travelling waves for a dual porous medium equation. Communications on Pure & Applied Analysis, 2016, 15 (2) : 623-636. doi: 10.3934/cpaa.2016.15.623

[6]

Xinfu Chen, Jong-Shenq Guo, Bei Hu. Dead-core rates for the porous medium equation with a strong absorption. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1761-1774. doi: 10.3934/dcdsb.2012.17.1761

[7]

Sofía Nieto, Guillermo Reyes. Asymptotic behavior of the solutions of the inhomogeneous Porous Medium Equation with critical vanishing density. Communications on Pure & Applied Analysis, 2013, 12 (2) : 1123-1139. doi: 10.3934/cpaa.2013.12.1123

[8]

Gabriele Grillo, Matteo Muratori, Fabio Punzo. On the asymptotic behaviour of solutions to the fractional porous medium equation with variable density. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5927-5962. doi: 10.3934/dcds.2015.35.5927

[9]

Lili Du, Zheng-An Yao. Localization of blow-up points for a nonlinear nonlocal porous medium equation. Communications on Pure & Applied Analysis, 2007, 6 (1) : 183-190. doi: 10.3934/cpaa.2007.6.183

[10]

Zhilei Liang. On the critical exponents for porous medium equation with a localized reaction in high dimensions. Communications on Pure & Applied Analysis, 2012, 11 (2) : 649-658. doi: 10.3934/cpaa.2012.11.649

[11]

Edoardo Mainini. On the signed porous medium flow. Networks & Heterogeneous Media, 2012, 7 (3) : 525-541. doi: 10.3934/nhm.2012.7.525

[12]

Danielle Hilhorst, Hideki Murakawa. Singular limit analysis of a reaction-diffusion system with precipitation and dissolution in a porous medium. Networks & Heterogeneous Media, 2014, 9 (4) : 669-682. doi: 10.3934/nhm.2014.9.669

[13]

Marie Henry, Danielle Hilhorst, Robert Eymard. Singular limit of a two-phase flow problem in porous medium as the air viscosity tends to zero. Discrete & Continuous Dynamical Systems - S, 2012, 5 (1) : 93-113. doi: 10.3934/dcdss.2012.5.93

[14]

Vianney Perchet, Marc Quincampoix. A differential game on Wasserstein space. Application to weak approachability with partial monitoring. Journal of Dynamics & Games, 2019, 6 (1) : 65-85. doi: 10.3934/jdg.2019005

[15]

Ansgar Jüngel, Stefan Schuchnigg. A discrete Bakry-Emery method and its application to the porous-medium equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5541-5560. doi: 10.3934/dcds.2017241

[16]

Boris Haspot, Ewelina Zatorska. From the highly compressible Navier-Stokes equations to the porous medium equation -- rate of convergence. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3107-3123. doi: 10.3934/dcds.2016.36.3107

[17]

Kaouther Ammar, Philippe Souplet. Liouville-type theorems and universal bounds for nonnegative solutions of the porous medium equation with source. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 665-689. doi: 10.3934/dcds.2010.26.665

[18]

Guofu Lu. Nonexistence and short time asymptotic behavior of source-type solution for porous medium equation with convection in one-dimension. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1567-1586. doi: 10.3934/dcdsb.2016011

[19]

Wen Wang, Dapeng Xie, Hui Zhou. Local Aronson-Bénilan gradient estimates and Harnack inequality for the porous medium equation along Ricci flow. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1957-1974. doi: 10.3934/cpaa.2018093

[20]

Jean-Daniel Djida, Juan J. Nieto, Iván Area. Nonlocal time-porous medium equation: Weak solutions and finite speed of propagation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4031-4053. doi: 10.3934/dcdsb.2019049

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]