# American Institute of Mathematical Sciences

October  2013, 18(8): 2175-2202. doi: 10.3934/dcdsb.2013.18.2175

## Fractional diffusion with Neumann boundary conditions: The logistic equation

 1 Dipartimento di Matematica, Sapienza Università di Roma, Piazzale A. Moro 5, 00185 Roma 2 Dipartimento di Scienze e Tecnologie, Università degli Studi di Napoli Parthenope, Centro Direzionale Isola C4, 80143 Napoli, Italy 3 Dipartimento di Matematica "Francesco Brioschi", Politecnico di Milano, p.za Leonardo da Vinci 32, 20133 Milano, Italy

Received  February 2013 Revised  May 2013 Published  July 2013

Motivated by experimental studies on the anomalous diffusion of biological populations, we study the spectral square root of the Laplacian in bounded domains with Neumann homogeneous boundary conditions. Such operator arises in the continuous limit for long jumps random walks with reflecting barriers. Existence and uniqueness results for positive solutions are proved in the case of indefinite nonlinearities of logistic type by means of bifurcation theory.
Citation: Eugenio Montefusco, Benedetta Pellacci, Gianmaria Verzini. Fractional diffusion with Neumann boundary conditions: The logistic equation. Discrete & Continuous Dynamical Systems - B, 2013, 18 (8) : 2175-2202. doi: 10.3934/dcdsb.2013.18.2175
##### References:
 [1] Antonio Ambrosetti and Giovanni Prodi, "A Primer of Nonlinear Analysis,'', Cambridge Studies in Advanced Mathematics, 34 (1995). Google Scholar [2] Fuensanta Andreu, José M. Mazón, Julio D. Rossi and Julián Toledo, The Neumann problem for nonlocal nonlinear diffusion equations,, J. Evol. Equ., 8 (2008), 189. doi: 10.1007/s00028-007-0377-9. Google Scholar [3] Henri Berestycki, Jean-Michel Roquejoffre and Luca Rossi, The periodic patch model for population dynamics with fractional diffusion,, Discrete Contin. Dyn. Syst. Ser. S, 4 (2011), 1. doi: 10.3934/dcdss.2011.4.1. Google Scholar [4] Kenneth J. Brown, Local and global bifurcation results for a semilinear boundary value problem,, J. Differential Equations, 239 (2007), 296. doi: 10.1016/j.jde.2007.05.013. Google Scholar [5] Xavier Cabré and Jean-Michel Roquejoffre, Propagation de fronts dans les équations de Fisher-KPP avec diffusion fractionnaire,, C. R. Math. Acad. Sci. Paris, 347 (2009), 1361. doi: 10.1016/j.crma.2009.10.012. Google Scholar [6] Xavier Cabré and Jinggang Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian,, Adv. Math., 224 (2010), 2052. doi: 10.1016/j.aim.2010.01.025. Google Scholar [7] Luis A. Caffarelli and Luis Silvestre, An extension problem related to the fractional Laplacian,, Comm. Partial Differential Equations, 32 (2007), 1245. doi: 10.1080/03605300600987306. Google Scholar [8] Luis A. Caffarelli, Sandro Salsa and Luis Silvestre, Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian,, Invent. Math., 171 (2008), 425. doi: 10.1007/s00222-007-0086-6. Google Scholar [9] Robert S. Cantrell and Chris Cosner, The effects of spatial heterogeneity in population dynamics,, J. Math. Biol., 29 (1991), 315. doi: 10.1007/BF00167155. Google Scholar [10] Robert S. Cantrell and Chris Cosner, Conditional persistence in logistic models via nonlinear diffusion,, Proc. Roy. Soc. Edinburgh Sect. A, 132 (2002), 267. doi: 10.1017/S0308210500001621. Google Scholar [11] Antonio Capella, Juan Dávila, Louis Dupaigne and Yannick Sire, Regularity of radial extremal solutions for some non-local semilinear equations,, Comm. Partial Differential Equations, 36 (2011), 1353. doi: 10.1080/03605302.2011.562954. Google Scholar [12] Eleonora Di Nezza, Giampiero Palatucci and Enrico Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces,, Bull. Sci. Math., 136 (2012), 521. doi: 10.1016/j.bulsci.2011.12.004. Google Scholar [13] Patricio Felmer and Alexander Quaas, Boundary blow up solutions for fractional elliptic equations,, Asymptot. Anal., 78 (2012), 123. Google Scholar [14] Stathis Filippas, Luisa Moschini and Achilles Tertikas, Sharp trace Hardy-Sobolev-Maz'ya inequalities and the fractional Laplacian,, Arch. Ration. Mech. Anal., 208 (2013), 109. doi: 10.1007/s00205-012-0594-4. Google Scholar [15] Qing-Yang Guan and Zhi-Ming Ma, Reflected symmetric $\alpha$-stable processes and regional fractional Laplacian,, Probab. Theory Related Fields, 134 (2006), 649. doi: 10.1007/s00440-005-0438-3. Google Scholar [16] Peter Hess, "Periodic-Parabolic Boundary Value Problems and Positivity,'', Pitman Research Notes in Mathematics Series, 247 (1991). Google Scholar [17] Nicolas E. Humphries, et al., Environmental context explains Levy and Brownian movement patterns of marine predators,, Nature, 465 (2010), 1066. Google Scholar [18] Gustavo Ferron Madeira and Arnaldo Simal do Nascimento, Bifurcation of stable equilibria and nonlinear flux boundary condition with indefinite weight,, J. Differential Equations, 251 (2011), 3228. doi: 10.1016/j.jde.2011.07.020. Google Scholar [19] Adele Manes and Anna Maria Micheletti, Un'estensione della teoria variazionale classica degli autovalori per operatori ellittici del secondo ordine,, Boll. Un. Mat. Ital. (4), 7 (1973), 285. Google Scholar [20] Paul H. Rabinowitz, Some global results for nonlinear eigenvalue problems,, J. Functional Analysis, 7 (1971), 487. doi: 10.1016/0022-1236(71)90030-9. Google Scholar [21] Andy M. Reynolds and Christopher J. Rhodes, The Lévy flight paradigm: Random search patterns and mechanisms,, Ecology, 90 (2009), 877. doi: 10.1890/08-0153.1. Google Scholar [22] J. G. Skellam, Random dispersal in theoretical populations,, Biometrika, 38 (1951), 196. Google Scholar [23] Pablo Raúl Stinga and José Luis Torrea, Extension problem and Harnack's inequality for some fractional operators,, Comm. Partial Differential Equations, 35 (2010), 2092. doi: 10.1080/03605301003735680. Google Scholar [24] Giovanni Maria Troianiello, "Elliptic Differential Equations and Obstacle Problems,'', The University Series in Mathematics, (1987). Google Scholar [25] Kenichiro Umezu, Behavior and stability of positive solutions of nonlinear elliptic boundary value problems arising in population dynamics,, Nonlinear Anal., 49 (2002), 817. doi: 10.1016/S0362-546X(01)00142-0. Google Scholar [26] Enrico Valdinoci, From the long jump random walk to the fractional Laplacian,, Bol. Soc. Esp. Mat. Apl. S$\vece$MA, 49 (2009), 33. Google Scholar [27] Gandhimohan M. Viswanathan, et al., Levy flight search patterns of wandering albatrosses,, Nature, 381 (1996), 413. Google Scholar

show all references

##### References:
 [1] Antonio Ambrosetti and Giovanni Prodi, "A Primer of Nonlinear Analysis,'', Cambridge Studies in Advanced Mathematics, 34 (1995). Google Scholar [2] Fuensanta Andreu, José M. Mazón, Julio D. Rossi and Julián Toledo, The Neumann problem for nonlocal nonlinear diffusion equations,, J. Evol. Equ., 8 (2008), 189. doi: 10.1007/s00028-007-0377-9. Google Scholar [3] Henri Berestycki, Jean-Michel Roquejoffre and Luca Rossi, The periodic patch model for population dynamics with fractional diffusion,, Discrete Contin. Dyn. Syst. Ser. S, 4 (2011), 1. doi: 10.3934/dcdss.2011.4.1. Google Scholar [4] Kenneth J. Brown, Local and global bifurcation results for a semilinear boundary value problem,, J. Differential Equations, 239 (2007), 296. doi: 10.1016/j.jde.2007.05.013. Google Scholar [5] Xavier Cabré and Jean-Michel Roquejoffre, Propagation de fronts dans les équations de Fisher-KPP avec diffusion fractionnaire,, C. R. Math. Acad. Sci. Paris, 347 (2009), 1361. doi: 10.1016/j.crma.2009.10.012. Google Scholar [6] Xavier Cabré and Jinggang Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian,, Adv. Math., 224 (2010), 2052. doi: 10.1016/j.aim.2010.01.025. Google Scholar [7] Luis A. Caffarelli and Luis Silvestre, An extension problem related to the fractional Laplacian,, Comm. Partial Differential Equations, 32 (2007), 1245. doi: 10.1080/03605300600987306. Google Scholar [8] Luis A. Caffarelli, Sandro Salsa and Luis Silvestre, Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian,, Invent. Math., 171 (2008), 425. doi: 10.1007/s00222-007-0086-6. Google Scholar [9] Robert S. Cantrell and Chris Cosner, The effects of spatial heterogeneity in population dynamics,, J. Math. Biol., 29 (1991), 315. doi: 10.1007/BF00167155. Google Scholar [10] Robert S. Cantrell and Chris Cosner, Conditional persistence in logistic models via nonlinear diffusion,, Proc. Roy. Soc. Edinburgh Sect. A, 132 (2002), 267. doi: 10.1017/S0308210500001621. Google Scholar [11] Antonio Capella, Juan Dávila, Louis Dupaigne and Yannick Sire, Regularity of radial extremal solutions for some non-local semilinear equations,, Comm. Partial Differential Equations, 36 (2011), 1353. doi: 10.1080/03605302.2011.562954. Google Scholar [12] Eleonora Di Nezza, Giampiero Palatucci and Enrico Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces,, Bull. Sci. Math., 136 (2012), 521. doi: 10.1016/j.bulsci.2011.12.004. Google Scholar [13] Patricio Felmer and Alexander Quaas, Boundary blow up solutions for fractional elliptic equations,, Asymptot. Anal., 78 (2012), 123. Google Scholar [14] Stathis Filippas, Luisa Moschini and Achilles Tertikas, Sharp trace Hardy-Sobolev-Maz'ya inequalities and the fractional Laplacian,, Arch. Ration. Mech. Anal., 208 (2013), 109. doi: 10.1007/s00205-012-0594-4. Google Scholar [15] Qing-Yang Guan and Zhi-Ming Ma, Reflected symmetric $\alpha$-stable processes and regional fractional Laplacian,, Probab. Theory Related Fields, 134 (2006), 649. doi: 10.1007/s00440-005-0438-3. Google Scholar [16] Peter Hess, "Periodic-Parabolic Boundary Value Problems and Positivity,'', Pitman Research Notes in Mathematics Series, 247 (1991). Google Scholar [17] Nicolas E. Humphries, et al., Environmental context explains Levy and Brownian movement patterns of marine predators,, Nature, 465 (2010), 1066. Google Scholar [18] Gustavo Ferron Madeira and Arnaldo Simal do Nascimento, Bifurcation of stable equilibria and nonlinear flux boundary condition with indefinite weight,, J. Differential Equations, 251 (2011), 3228. doi: 10.1016/j.jde.2011.07.020. Google Scholar [19] Adele Manes and Anna Maria Micheletti, Un'estensione della teoria variazionale classica degli autovalori per operatori ellittici del secondo ordine,, Boll. Un. Mat. Ital. (4), 7 (1973), 285. Google Scholar [20] Paul H. Rabinowitz, Some global results for nonlinear eigenvalue problems,, J. Functional Analysis, 7 (1971), 487. doi: 10.1016/0022-1236(71)90030-9. Google Scholar [21] Andy M. Reynolds and Christopher J. Rhodes, The Lévy flight paradigm: Random search patterns and mechanisms,, Ecology, 90 (2009), 877. doi: 10.1890/08-0153.1. Google Scholar [22] J. G. Skellam, Random dispersal in theoretical populations,, Biometrika, 38 (1951), 196. Google Scholar [23] Pablo Raúl Stinga and José Luis Torrea, Extension problem and Harnack's inequality for some fractional operators,, Comm. Partial Differential Equations, 35 (2010), 2092. doi: 10.1080/03605301003735680. Google Scholar [24] Giovanni Maria Troianiello, "Elliptic Differential Equations and Obstacle Problems,'', The University Series in Mathematics, (1987). Google Scholar [25] Kenichiro Umezu, Behavior and stability of positive solutions of nonlinear elliptic boundary value problems arising in population dynamics,, Nonlinear Anal., 49 (2002), 817. doi: 10.1016/S0362-546X(01)00142-0. Google Scholar [26] Enrico Valdinoci, From the long jump random walk to the fractional Laplacian,, Bol. Soc. Esp. Mat. Apl. S$\vece$MA, 49 (2009), 33. Google Scholar [27] Gandhimohan M. Viswanathan, et al., Levy flight search patterns of wandering albatrosses,, Nature, 381 (1996), 413. Google Scholar
 [1] Siwei Duo, Hong Wang, Yanzhi Zhang. A comparative study on nonlocal diffusion operators related to the fractional Laplacian. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 231-256. doi: 10.3934/dcdsb.2018110 [2] Juan-Luis Vázquez. Recent progress in the theory of nonlinear diffusion with fractional Laplacian operators. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 857-885. doi: 10.3934/dcdss.2014.7.857 [3] Ravi P. Agarwal, Kanishka Perera, Zhitao Zhang. On some nonlocal eigenvalue problems. Discrete & Continuous Dynamical Systems - S, 2012, 5 (4) : 707-714. doi: 10.3934/dcdss.2012.5.707 [4] Maria Fărcăşeanu, Mihai Mihăilescu, Denisa Stancu-Dumitru. Perturbed fractional eigenvalue problems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6243-6255. doi: 10.3934/dcds.2017270 [5] Sarah Constantin, Robert S. Strichartz, Miles Wheeler. Analysis of the Laplacian and spectral operators on the Vicsek set. Communications on Pure & Applied Analysis, 2011, 10 (1) : 1-44. doi: 10.3934/cpaa.2011.10.1 [6] Yutong Chen, Jiabao Su. Resonant problems for fractional Laplacian. Communications on Pure & Applied Analysis, 2017, 16 (1) : 163-188. doi: 10.3934/cpaa.2017008 [7] J. R. L. Webb. Uniqueness of the principal eigenvalue in nonlocal boundary value problems. Discrete & Continuous Dynamical Systems - S, 2008, 1 (1) : 177-186. doi: 10.3934/dcdss.2008.1.177 [8] Fei-Ying Yang, Wan-Tong Li, Jian-Wen Sun. Principal eigenvalues for some nonlocal eigenvalue problems and applications. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 4027-4049. doi: 10.3934/dcds.2016.36.4027 [9] Fang Li, Jerome Coville, Xuefeng Wang. On eigenvalue problems arising from nonlocal diffusion models. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 879-903. doi: 10.3934/dcds.2017036 [10] Alexei Rybkin. On the boundary control approach to inverse spectral and scattering theory for Schrödinger operators. Inverse Problems & Imaging, 2009, 3 (1) : 139-149. doi: 10.3934/ipi.2009.3.139 [11] Marta García-Huidobro, Raul Manásevich, J. R. Ward. Vector p-Laplacian like operators, pseudo-eigenvalues, and bifurcation. Discrete & Continuous Dynamical Systems - A, 2007, 19 (2) : 299-321. doi: 10.3934/dcds.2007.19.299 [12] Kanishka Perera, Andrzej Szulkin. p-Laplacian problems where the nonlinearity crosses an eigenvalue. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 743-753. doi: 10.3934/dcds.2005.13.743 [13] Tetsutaro Shibata. Global behavior of bifurcation curves for the nonlinear eigenvalue problems with periodic nonlinear terms. Communications on Pure & Applied Analysis, 2018, 17 (5) : 2139-2147. doi: 10.3934/cpaa.2018102 [14] Marco Squassina. Preface: Recent progresses in the theory of nonlinear nonlocal problems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (3) : i-i. doi: 10.3934/dcdss.201803i [15] Patrizia Pucci, Mingqi Xiang, Binlin Zhang. A diffusion problem of Kirchhoff type involving the nonlocal fractional p-Laplacian. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 4035-4051. doi: 10.3934/dcds.2017171 [16] John R. Graef, Lingju Kong, Qingkai Kong, Min Wang. Positive solutions of nonlocal fractional boundary value problems. Conference Publications, 2013, 2013 (special) : 283-290. doi: 10.3934/proc.2013.2013.283 [17] J. Ángel Cid, Pedro J. Torres. Solvability for some boundary value problems with $\phi$-Laplacian operators. Discrete & Continuous Dynamical Systems - A, 2009, 23 (3) : 727-732. doi: 10.3934/dcds.2009.23.727 [18] Eugenia Pérez. On periodic Steklov type eigenvalue problems on half-bands and the spectral homogenization problem. Discrete & Continuous Dynamical Systems - B, 2007, 7 (4) : 859-883. doi: 10.3934/dcdsb.2007.7.859 [19] Kanishka Perera, Marco Squassina. Bifurcation results for problems with fractional Trudinger-Moser nonlinearity. Discrete & Continuous Dynamical Systems - S, 2018, 11 (3) : 561-576. doi: 10.3934/dcdss.2018031 [20] Anouar Bahrouni, VicenŢiu D. RĂdulescu. On a new fractional Sobolev space and applications to nonlocal variational problems with variable exponent. Discrete & Continuous Dynamical Systems - S, 2018, 11 (3) : 379-389. doi: 10.3934/dcdss.2018021

2018 Impact Factor: 1.008