January  2013, 18(1): 185-207. doi: 10.3934/dcdsb.2013.18.185

Direct exponential ordering for neutral compartmental systems with non-autonomous $\mathbf{D}$-operator

1. 

Departamento de Matemática Aplicada, Escuela de Ingenierías Industriales and member of IMUVA, Instituto de Matemáticas, Universidad de Valladolid, 47011 Valladolid, Spain

2. 

Departamento de Matemática Aplicada, Escuela de Ingenierías Industriales, Universidad de Valladolid, 47011 Valladolid, Spain

Received  May 2012 Revised  July 2012 Published  September 2012

We study closed compartmental systems described by neutral functional differential equations with non-autonomous stable $D$-operator which are monotone for the direct exponential ordering. Under some appropriate conditions on the induced semiflow including uniform stability for the exponential order and the differentiability of the $D$-operator along the base flow, we establish the 1-covering property of omega-limit sets, in order to describe the long-term behavior of the trajectories.
Citation: Rafael Obaya, Víctor M. Villarragut. Direct exponential ordering for neutral compartmental systems with non-autonomous $\mathbf{D}$-operator. Discrete & Continuous Dynamical Systems - B, 2013, 18 (1) : 185-207. doi: 10.3934/dcdsb.2013.18.185
References:
[1]

O. Arino and F. Bourad, On the asymptotic behavior of the solutions of a class of scalar neutral equations generating a monotone semiflow,, J. Differential Equations, 87 (1990), 84. Google Scholar

[2]

O. Arino and E. Haourigui, On the asymptotic behavior of solutions of some delay differential systems which have a first integral,, J. Math. Anal. Appl., 122 (1987), 36. doi: 10.1016/0022-247X(87)90342-8. Google Scholar

[3]

R. Ellis, "Lectures on Topological Dynamics,", Benjamin, (1969). Google Scholar

[4]

A. M. Fink, "Almost Periodic Differential Equations,", Lecture Notes in Mathematics Springer-Verlag, 377 (1974). Google Scholar

[5]

I. Gy\Hori, Connections between compartmental systems with pipes and integro-differential equations,, Math. Modelling, 7 (1986), 1215. doi: 10.1016/0270-0255(86)90077-1. Google Scholar

[6]

I. Gy\Hori and J. Eller, Compartmental systems with pipes,, Math. Biosci., 53 (1981), 223. doi: 10.1016/0025-5564(81)90019-5. Google Scholar

[7]

I. Gy\Hori and J. Wu, A neutral equation arising from compartmental systems with pipes,, J. Dynam. Differential Equations, 3 (1991), 289. Google Scholar

[8]

W. M. Haddad, V. Chellaboina and Q. Hui, "Nonnegative and Compartmental Dynamical Systems,", Princeton University Press, (2010). Google Scholar

[9]

J. K. Hale, "Theory of Functional Differential Equations,", Applied Mathematical Sciences vol. 3, (1977). Google Scholar

[10]

J. K. Hale and S. M. Verduyn Lunel, "Introduction to Functional Differential Equations,", Applied Mathematical Sciences vol. 99, (1993). Google Scholar

[11]

Y. Hino, S. Murakami and T. Naito, "Functional Differential Equations with Infinite Delay,", Lecture Notes in Math., (1473). Google Scholar

[12]

J. A. Jacquez, "Compartmental Analysis in Biology and Medicine,", Third Edition, (1996). Google Scholar

[13]

J. A. Jacquez and C. P. Simon, Qualitative theory of compartmental systems,, SIAM Review, 35 (1993), 43. doi: 10.1137/1035003. Google Scholar

[14]

J. Jiang and X.-Q. Zhao, Convergence in monotone and uniformly stable skew-product semiflows with applications,, J. Reine Angew. Math., 589 (2005), 21. doi: 10.1515/crll.2005.2005.589.21. Google Scholar

[15]

T. Krisztin and J. Wu, Asymptotic periodicity, monotonicity, and oscillation of solutions of scalar neutral functional differential equations,, J. Math. Anal. Appl., 199 (1996), 502. doi: 10.1006/jmaa.1996.0158. Google Scholar

[16]

V. Mu\ noz-Villarragut, S. Novo and R. Obaya, Neutral functional differential equations with applications to compartmental systems,, SIAM J. Math. Anal., 40 (2008), 1003. doi: 10.1137/070711177. Google Scholar

[17]

S. Novo, R. Obaya and A. M. Sanz, Stability and extensibility results for abstract skew-product semiflows,, J. Differential Equations, 235 (2007), 623. Google Scholar

[18]

S. Novo, R. Obaya and V. M. Villarragut, Exponential ordering for nonautonomous neutral functional differential equations,, SIAM J. Math. Anal., 41 (2009), 1025. doi: 10.1137/080744682. Google Scholar

[19]

R. Obaya and V. M. Villarragut, Exponential ordering for neutral functional differential equations with non-autonomous linear $D$-operator,, J. Dyn. Diff. Equat., 23 (2011), 695. doi: 10.1007/s10884-011-9210-9. Google Scholar

[20]

R. J. Sacker and G. R. Sell, "Lifting Properties in Skew-Products Flows with Applications to Differential Equations,", Mem. Amer. Math. Soc., (1977). Google Scholar

[21]

W. X. Shen and Y. F. Yi, "Almost Automorphic and Almost Periodic Dynamics in Skew-Product Semiflows,", Mem. Amer. Math. Soc., 136 (1998). Google Scholar

[22]

Z. Wang and J. Wu, Neutral functional differential equations with infinite delay,, Funkcial. Ekvac., 28 (1985), 157. Google Scholar

[23]

J. Wu, Unified treatment of local theory of NFDEs with infinite delay,, Tamkang J. Math., 22 (1991), 51. Google Scholar

[24]

J. Wu and H. I. Freedman, Monotone semiflows generated by neutral functional differential equations with application to compartmental systems,, Can. J. Math., 43 (1991), 1098. doi: 10.4153/CJM-1991-064-1. Google Scholar

show all references

References:
[1]

O. Arino and F. Bourad, On the asymptotic behavior of the solutions of a class of scalar neutral equations generating a monotone semiflow,, J. Differential Equations, 87 (1990), 84. Google Scholar

[2]

O. Arino and E. Haourigui, On the asymptotic behavior of solutions of some delay differential systems which have a first integral,, J. Math. Anal. Appl., 122 (1987), 36. doi: 10.1016/0022-247X(87)90342-8. Google Scholar

[3]

R. Ellis, "Lectures on Topological Dynamics,", Benjamin, (1969). Google Scholar

[4]

A. M. Fink, "Almost Periodic Differential Equations,", Lecture Notes in Mathematics Springer-Verlag, 377 (1974). Google Scholar

[5]

I. Gy\Hori, Connections between compartmental systems with pipes and integro-differential equations,, Math. Modelling, 7 (1986), 1215. doi: 10.1016/0270-0255(86)90077-1. Google Scholar

[6]

I. Gy\Hori and J. Eller, Compartmental systems with pipes,, Math. Biosci., 53 (1981), 223. doi: 10.1016/0025-5564(81)90019-5. Google Scholar

[7]

I. Gy\Hori and J. Wu, A neutral equation arising from compartmental systems with pipes,, J. Dynam. Differential Equations, 3 (1991), 289. Google Scholar

[8]

W. M. Haddad, V. Chellaboina and Q. Hui, "Nonnegative and Compartmental Dynamical Systems,", Princeton University Press, (2010). Google Scholar

[9]

J. K. Hale, "Theory of Functional Differential Equations,", Applied Mathematical Sciences vol. 3, (1977). Google Scholar

[10]

J. K. Hale and S. M. Verduyn Lunel, "Introduction to Functional Differential Equations,", Applied Mathematical Sciences vol. 99, (1993). Google Scholar

[11]

Y. Hino, S. Murakami and T. Naito, "Functional Differential Equations with Infinite Delay,", Lecture Notes in Math., (1473). Google Scholar

[12]

J. A. Jacquez, "Compartmental Analysis in Biology and Medicine,", Third Edition, (1996). Google Scholar

[13]

J. A. Jacquez and C. P. Simon, Qualitative theory of compartmental systems,, SIAM Review, 35 (1993), 43. doi: 10.1137/1035003. Google Scholar

[14]

J. Jiang and X.-Q. Zhao, Convergence in monotone and uniformly stable skew-product semiflows with applications,, J. Reine Angew. Math., 589 (2005), 21. doi: 10.1515/crll.2005.2005.589.21. Google Scholar

[15]

T. Krisztin and J. Wu, Asymptotic periodicity, monotonicity, and oscillation of solutions of scalar neutral functional differential equations,, J. Math. Anal. Appl., 199 (1996), 502. doi: 10.1006/jmaa.1996.0158. Google Scholar

[16]

V. Mu\ noz-Villarragut, S. Novo and R. Obaya, Neutral functional differential equations with applications to compartmental systems,, SIAM J. Math. Anal., 40 (2008), 1003. doi: 10.1137/070711177. Google Scholar

[17]

S. Novo, R. Obaya and A. M. Sanz, Stability and extensibility results for abstract skew-product semiflows,, J. Differential Equations, 235 (2007), 623. Google Scholar

[18]

S. Novo, R. Obaya and V. M. Villarragut, Exponential ordering for nonautonomous neutral functional differential equations,, SIAM J. Math. Anal., 41 (2009), 1025. doi: 10.1137/080744682. Google Scholar

[19]

R. Obaya and V. M. Villarragut, Exponential ordering for neutral functional differential equations with non-autonomous linear $D$-operator,, J. Dyn. Diff. Equat., 23 (2011), 695. doi: 10.1007/s10884-011-9210-9. Google Scholar

[20]

R. J. Sacker and G. R. Sell, "Lifting Properties in Skew-Products Flows with Applications to Differential Equations,", Mem. Amer. Math. Soc., (1977). Google Scholar

[21]

W. X. Shen and Y. F. Yi, "Almost Automorphic and Almost Periodic Dynamics in Skew-Product Semiflows,", Mem. Amer. Math. Soc., 136 (1998). Google Scholar

[22]

Z. Wang and J. Wu, Neutral functional differential equations with infinite delay,, Funkcial. Ekvac., 28 (1985), 157. Google Scholar

[23]

J. Wu, Unified treatment of local theory of NFDEs with infinite delay,, Tamkang J. Math., 22 (1991), 51. Google Scholar

[24]

J. Wu and H. I. Freedman, Monotone semiflows generated by neutral functional differential equations with application to compartmental systems,, Can. J. Math., 43 (1991), 1098. doi: 10.4153/CJM-1991-064-1. Google Scholar

[1]

Sylvia Novo, Carmen Núñez, Rafael Obaya, Ana M. Sanz. Skew-product semiflows for non-autonomous partial functional differential equations with delay. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4291-4321. doi: 10.3934/dcds.2014.34.4291

[2]

Alexandre N. Carvalho, José A. Langa, James C. Robinson. Non-autonomous dynamical systems. Discrete & Continuous Dynamical Systems - B, 2015, 20 (3) : 703-747. doi: 10.3934/dcdsb.2015.20.703

[3]

Juan A. Calzada, Rafael Obaya, Ana M. Sanz. Continuous separation for monotone skew-product semiflows: From theoretical to numerical results. Discrete & Continuous Dynamical Systems - B, 2015, 20 (3) : 915-944. doi: 10.3934/dcdsb.2015.20.915

[4]

Saša Kocić. Reducibility of skew-product systems with multidimensional Brjuno base flows. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 261-283. doi: 10.3934/dcds.2011.29.261

[5]

David Cheban, Cristiana Mammana. Continuous dependence of attractors on parameters of non-autonomous dynamical systems and infinite iterated function systems. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 499-515. doi: 10.3934/dcds.2007.18.499

[6]

Rafael Obaya, Ana M. Sanz. Persistence in non-autonomous quasimonotone parabolic partial functional differential equations with delay. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3947-3970. doi: 10.3934/dcdsb.2018338

[7]

Tomás Caraballo, Alexandre N. Carvalho, Henrique B. da Costa, José A. Langa. Equi-attraction and continuity of attractors for skew-product semiflows. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 2949-2967. doi: 10.3934/dcdsb.2016081

[8]

Tomás Caraballo, David Cheban. On the structure of the global attractor for infinite-dimensional non-autonomous dynamical systems with weak convergence. Communications on Pure & Applied Analysis, 2013, 12 (1) : 281-302. doi: 10.3934/cpaa.2013.12.281

[9]

Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087

[10]

Grzegorz Łukaszewicz, James C. Robinson. Invariant measures for non-autonomous dissipative dynamical systems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4211-4222. doi: 10.3934/dcds.2014.34.4211

[11]

Michael Zgurovsky, Mark Gluzman, Nataliia Gorban, Pavlo Kasyanov, Liliia Paliichuk, Olha Khomenko. Uniform global attractors for non-autonomous dissipative dynamical systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 2053-2065. doi: 10.3934/dcdsb.2017120

[12]

Michael Dellnitz, Christian Horenkamp. The efficient approximation of coherent pairs in non-autonomous dynamical systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (9) : 3029-3042. doi: 10.3934/dcds.2012.32.3029

[13]

Tomás Caraballo, David Cheban. On the structure of the global attractor for non-autonomous dynamical systems with weak convergence. Communications on Pure & Applied Analysis, 2012, 11 (2) : 809-828. doi: 10.3934/cpaa.2012.11.809

[14]

Bixiang Wang. Multivalued non-autonomous random dynamical systems for wave equations without uniqueness. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 2011-2051. doi: 10.3934/dcdsb.2017119

[15]

Fuke Wu, Shigeng Hu. The LaSalle-type theorem for neutral stochastic functional differential equations with infinite delay. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 1065-1094. doi: 10.3934/dcds.2012.32.1065

[16]

Eduardo Hernández, Donal O'Regan. $C^{\alpha}$-Hölder classical solutions for non-autonomous neutral differential equations. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 241-260. doi: 10.3934/dcds.2011.29.241

[17]

Rodrigo Samprogna, Tomás Caraballo. Pullback attractor for a dynamic boundary non-autonomous problem with Infinite Delay. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 509-523. doi: 10.3934/dcdsb.2017195

[18]

Iacopo P. Longo, Sylvia Novo, Rafael Obaya. Topologies of continuity for Carathéodory delay differential equations with applications in non-autonomous dynamics. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 5491-5520. doi: 10.3934/dcds.2019224

[19]

Hernán R. Henríquez, Claudio Cuevas, Alejandro Caicedo. Asymptotically periodic solutions of neutral partial differential equations with infinite delay. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2031-2068. doi: 10.3934/cpaa.2013.12.2031

[20]

Xianlong Fu. Approximate controllability of semilinear non-autonomous evolution systems with state-dependent delay. Evolution Equations & Control Theory, 2017, 6 (4) : 517-534. doi: 10.3934/eect.2017026

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]