September  2013, 18(7): 1793-1804. doi: 10.3934/dcdsb.2013.18.1793

Attractivity for neutral functional differential equations

1. 

Dpto. Ecuaciones Diferenciales y Análisis Numérico, Facultad de Matemáticas, Universidad de Sevilla, Campus Reina Mercedes, Apdo. de Correos 1160, 41080 Sevilla

2. 

Department of Mathematical Sciences, University of Durham, Durham DH1 3LE, United Kingdom

Received  February 2013 Revised  March 2013 Published  May 2013

We study the long term dynamics of non-autonomous functional differential equations. Namely, we establish existence results on pullback attractors for non-linear neutral functional differential equations with time varying delays. The two main results differ in smoothness properties of delay functions.
Citation: Tomás Caraballo, Gábor Kiss. Attractivity for neutral functional differential equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1793-1804. doi: 10.3934/dcdsb.2013.18.1793
References:
[1]

T. Caraballo and G. Kiss, Attractors for differential equations with multiple variable delay,, Discrete Contin. Dyn. Syst., 33 (2013), 1365. doi: 10.3934/dcds.2013.33.1365. Google Scholar

[2]

T. Caraballo, G. Łukaszewicz and J. Real, Pullback attractors for asymptotically compact non-autonomous dynamical systems,, Nonlinear Analysis, 64 (2006), 484. doi: 10.1016/j.na.2005.03.111. Google Scholar

[3]

T. Caraballo, P. Marín-Rubio and J. Valero, Autonomous and non-autonomous attractors for differential equations with delays,, J. Differential Equations, 208 (2005), 9. doi: 10.1016/j.jde.2003.09.008. Google Scholar

[4]

Tomás Caraballo, José A. Langa and James C. Robinson, Attractors for differential equations with variable delays,, J. Math. Anal. Appl., 260 (2001), 421. doi: 10.1006/jmaa.2000.7464. Google Scholar

[5]

T. Caraballo, J. Real and T. Taniguchi, The exponential stability of neutral stochastic delay partial differential equations,, Discrete Contin. Dyn. Syst., 18 (2007), 295. doi: 10.3934/dcds.2007.18.295. Google Scholar

[6]

H. Chen, Impulsive-integral inequality and exponential stability for stochastic partial differential equations with delays,, Statist. Probab. Lett., 80 (2010), 50. doi: 10.1016/j.spl.2009.09.011. Google Scholar

[7]

J. K. Hale, "Asymptotic Behavior of Dissipative Systems,", Mathematical Surveys and Monographs, 25 (1988). Google Scholar

[8]

J. K. Hale and S. M. Verduyn Lunel, "Introduction to Functional-Differential Equations,", \textbf{99} of Applied Mathematical Sciences. Springer-Verlag, 99 (1993). Google Scholar

[9]

G. Kiss and B. Krauskopf, Stability implications of delay distribution for first-order and second-order systems,, Discrete Contin. Dyn. Syst. Ser. B, 13 (2010), 327. doi: 10.3934/dcdsb.2010.13.327. Google Scholar

[10]

G. Kiss and B. Krauskopf, Stabilizing effect of delay distribution for a class of second-order systems without instantaneous feedback,, Dynamical Systems: An International Journal, 26 (2011), 85. doi: 10.1080/14689367.2010.523889. Google Scholar

[11]

G. Kiss and J.-P. Lessard, Computational fixed point theory for differential delay equations with multiple time lags,, Journal of Differential Equations, 252 (2012), 3093. doi: 10.1016/j.jde.2011.11.020. Google Scholar

[12]

P. E. Kloeden, Pullback attractors of nonautonomous semidynamical systems,, Stoch. Dyn., 3 (2003), 101. doi: 10.1142/S0219493703000632. Google Scholar

[13]

P. Kloeden and M. Rasmussen, "Nonautonomous Dynamical Systems,", Mathematical Surveys and Monographs, 176 (2011). Google Scholar

[14]

Y. Kuang, "Delay Differential Equations with Applications in Population Dynamics,", \textbf{191} of Mathematics in Science and Engineering. Academic Press Inc., 191 (1993). Google Scholar

[15]

P. Marín-Rubio and J. Real, On the relation between two different concepts of pullback attractors for non-autonomous dynamical systems,, Nonlinear Anal., 71 (2009), 3956. doi: 10.1016/j.na.2009.02.065. Google Scholar

[16]

R. D. Nussbaum, Functional differential equations,, in, 2 (2002), 461. doi: 10.1016/S1874-575X(02)80031-5. Google Scholar

[17]

M. Rasmussen, "Attractivity and Bifurcation for Nonautonomous Dynamical Systems,", \textbf{1907} of Lecture Notes in Mathematics. Springer, 1907 (2007). doi: 10.1007/978-3-540-71225-1. Google Scholar

[18]

B. Schmalfuss, Backward cocycles and attractors of stochastic differential equations,, in, (1992), 185. Google Scholar

[19]

G. R. Sell, Nonautonomous differential equations and topological dynamics. I. The basic theory,, Trans. Amer. Math. Soc., 127 (1967), 241. Google Scholar

[20]

G. R. Sell, Nonautonomous differential equations and topological dynamics. II. Limiting equations,, Trans. Amer. Math. Soc., 127 (1967), 263. doi: 10.1090/S0002-9947-1967-0212314-4. Google Scholar

[21]

H. O. Walther, Dynamics of delay differential equations,, in, 205 (2006), 411. doi: 10.1007/1-4020-3647-7_10. Google Scholar

[22]

J. Wu, H. Xia and B. Zhang, Topological transversality and periodic solutions of neutral functional-differential equations,, Proc. Roy. Soc. Edinburgh Sect. A, 129 (1999), 199. doi: 10.1017/S0308210500027530. Google Scholar

show all references

References:
[1]

T. Caraballo and G. Kiss, Attractors for differential equations with multiple variable delay,, Discrete Contin. Dyn. Syst., 33 (2013), 1365. doi: 10.3934/dcds.2013.33.1365. Google Scholar

[2]

T. Caraballo, G. Łukaszewicz and J. Real, Pullback attractors for asymptotically compact non-autonomous dynamical systems,, Nonlinear Analysis, 64 (2006), 484. doi: 10.1016/j.na.2005.03.111. Google Scholar

[3]

T. Caraballo, P. Marín-Rubio and J. Valero, Autonomous and non-autonomous attractors for differential equations with delays,, J. Differential Equations, 208 (2005), 9. doi: 10.1016/j.jde.2003.09.008. Google Scholar

[4]

Tomás Caraballo, José A. Langa and James C. Robinson, Attractors for differential equations with variable delays,, J. Math. Anal. Appl., 260 (2001), 421. doi: 10.1006/jmaa.2000.7464. Google Scholar

[5]

T. Caraballo, J. Real and T. Taniguchi, The exponential stability of neutral stochastic delay partial differential equations,, Discrete Contin. Dyn. Syst., 18 (2007), 295. doi: 10.3934/dcds.2007.18.295. Google Scholar

[6]

H. Chen, Impulsive-integral inequality and exponential stability for stochastic partial differential equations with delays,, Statist. Probab. Lett., 80 (2010), 50. doi: 10.1016/j.spl.2009.09.011. Google Scholar

[7]

J. K. Hale, "Asymptotic Behavior of Dissipative Systems,", Mathematical Surveys and Monographs, 25 (1988). Google Scholar

[8]

J. K. Hale and S. M. Verduyn Lunel, "Introduction to Functional-Differential Equations,", \textbf{99} of Applied Mathematical Sciences. Springer-Verlag, 99 (1993). Google Scholar

[9]

G. Kiss and B. Krauskopf, Stability implications of delay distribution for first-order and second-order systems,, Discrete Contin. Dyn. Syst. Ser. B, 13 (2010), 327. doi: 10.3934/dcdsb.2010.13.327. Google Scholar

[10]

G. Kiss and B. Krauskopf, Stabilizing effect of delay distribution for a class of second-order systems without instantaneous feedback,, Dynamical Systems: An International Journal, 26 (2011), 85. doi: 10.1080/14689367.2010.523889. Google Scholar

[11]

G. Kiss and J.-P. Lessard, Computational fixed point theory for differential delay equations with multiple time lags,, Journal of Differential Equations, 252 (2012), 3093. doi: 10.1016/j.jde.2011.11.020. Google Scholar

[12]

P. E. Kloeden, Pullback attractors of nonautonomous semidynamical systems,, Stoch. Dyn., 3 (2003), 101. doi: 10.1142/S0219493703000632. Google Scholar

[13]

P. Kloeden and M. Rasmussen, "Nonautonomous Dynamical Systems,", Mathematical Surveys and Monographs, 176 (2011). Google Scholar

[14]

Y. Kuang, "Delay Differential Equations with Applications in Population Dynamics,", \textbf{191} of Mathematics in Science and Engineering. Academic Press Inc., 191 (1993). Google Scholar

[15]

P. Marín-Rubio and J. Real, On the relation between two different concepts of pullback attractors for non-autonomous dynamical systems,, Nonlinear Anal., 71 (2009), 3956. doi: 10.1016/j.na.2009.02.065. Google Scholar

[16]

R. D. Nussbaum, Functional differential equations,, in, 2 (2002), 461. doi: 10.1016/S1874-575X(02)80031-5. Google Scholar

[17]

M. Rasmussen, "Attractivity and Bifurcation for Nonautonomous Dynamical Systems,", \textbf{1907} of Lecture Notes in Mathematics. Springer, 1907 (2007). doi: 10.1007/978-3-540-71225-1. Google Scholar

[18]

B. Schmalfuss, Backward cocycles and attractors of stochastic differential equations,, in, (1992), 185. Google Scholar

[19]

G. R. Sell, Nonautonomous differential equations and topological dynamics. I. The basic theory,, Trans. Amer. Math. Soc., 127 (1967), 241. Google Scholar

[20]

G. R. Sell, Nonautonomous differential equations and topological dynamics. II. Limiting equations,, Trans. Amer. Math. Soc., 127 (1967), 263. doi: 10.1090/S0002-9947-1967-0212314-4. Google Scholar

[21]

H. O. Walther, Dynamics of delay differential equations,, in, 205 (2006), 411. doi: 10.1007/1-4020-3647-7_10. Google Scholar

[22]

J. Wu, H. Xia and B. Zhang, Topological transversality and periodic solutions of neutral functional-differential equations,, Proc. Roy. Soc. Edinburgh Sect. A, 129 (1999), 199. doi: 10.1017/S0308210500027530. Google Scholar

[1]

Wen Tan. The regularity of pullback attractor for a non-autonomous p-Laplacian equation with dynamical boundary condition. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 529-546. doi: 10.3934/dcdsb.2018194

[2]

Rodrigo Samprogna, Tomás Caraballo. Pullback attractor for a dynamic boundary non-autonomous problem with Infinite Delay. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 509-523. doi: 10.3934/dcdsb.2017195

[3]

T. Caraballo, J. A. Langa, J. Valero. Structure of the pullback attractor for a non-autonomous scalar differential inclusion. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 979-994. doi: 10.3934/dcdss.2016037

[4]

Chunyou Sun, Daomin Cao, Jinqiao Duan. Non-autonomous wave dynamics with memory --- asymptotic regularity and uniform attractor. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 743-761. doi: 10.3934/dcdsb.2008.9.743

[5]

Olivier Goubet, Wided Kechiche. Uniform attractor for non-autonomous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2011, 10 (2) : 639-651. doi: 10.3934/cpaa.2011.10.639

[6]

Xue-Li Song, Yan-Ren Hou. Pullback $\mathcal{D}$-attractors for the non-autonomous Newton-Boussinesq equation in two-dimensional bounded domain. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 991-1009. doi: 10.3934/dcds.2012.32.991

[7]

Bo You, Yanren Hou, Fang Li, Jinping Jiang. Pullback attractors for the non-autonomous quasi-linear complex Ginzburg-Landau equation with $p$-Laplacian. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1801-1814. doi: 10.3934/dcdsb.2014.19.1801

[8]

Zhaojuan Wang, Shengfan Zhou. Random attractor for stochastic non-autonomous damped wave equation with critical exponent. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 545-573. doi: 10.3934/dcds.2017022

[9]

Shengfan Zhou, Min Zhao. Fractal dimension of random attractor for stochastic non-autonomous damped wave equation with linear multiplicative white noise. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2887-2914. doi: 10.3934/dcds.2016.36.2887

[10]

Zhaojuan Wang, Shengfan Zhou. Random attractor and random exponential attractor for stochastic non-autonomous damped cubic wave equation with linear multiplicative white noise. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4767-4817. doi: 10.3934/dcds.2018210

[11]

Peter E. Kloeden, Jacson Simsen. Pullback attractors for non-autonomous evolution equations with spatially variable exponents. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2543-2557. doi: 10.3934/cpaa.2014.13.2543

[12]

Flank D. M. Bezerra, Vera L. Carbone, Marcelo J. D. Nascimento, Karina Schiabel. Pullback attractors for a class of non-autonomous thermoelastic plate systems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3553-3571. doi: 10.3934/dcdsb.2017214

[13]

Zhijian Yang, Yanan Li. Upper semicontinuity of pullback attractors for non-autonomous Kirchhoff wave equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4899-4912. doi: 10.3934/dcdsb.2019036

[14]

Xiaolin Jia, Caidi Zhao, Juan Cao. Uniform attractor of the non-autonomous discrete Selkov model. Discrete & Continuous Dynamical Systems - A, 2014, 34 (1) : 229-248. doi: 10.3934/dcds.2014.34.229

[15]

Tomás Caraballo, David Cheban. On the structure of the global attractor for non-autonomous dynamical systems with weak convergence. Communications on Pure & Applied Analysis, 2012, 11 (2) : 809-828. doi: 10.3934/cpaa.2012.11.809

[16]

Xin Li, Chunyou Sun, Na Zhang. Dynamics for a non-autonomous degenerate parabolic equation in $\mathfrak{D}_{0}^{1}(\Omega, \sigma)$. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 7063-7079. doi: 10.3934/dcds.2016108

[17]

Xinguang Yang, Baowei Feng, Thales Maier de Souza, Taige Wang. Long-time dynamics for a non-autonomous Navier-Stokes-Voigt equation in Lipschitz domains. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 363-386. doi: 10.3934/dcdsb.2018084

[18]

Jong Yeoul Park, Jae Ug Jeong. Pullback attractors for a $2D$-non-autonomous incompressible non-Newtonian fluid with variable delays. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2687-2702. doi: 10.3934/dcdsb.2016068

[19]

Guowei Liu, Rui Xue. Pullback dynamic behavior for a non-autonomous incompressible non-Newtonian fluid. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2193-2216. doi: 10.3934/dcdsb.2018231

[20]

Rafael Obaya, Víctor M. Villarragut. Direct exponential ordering for neutral compartmental systems with non-autonomous $\mathbf{D}$-operator. Discrete & Continuous Dynamical Systems - B, 2013, 18 (1) : 185-207. doi: 10.3934/dcdsb.2013.18.185

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]