# American Institute of Mathematical Sciences

January  2013, 18(1): 147-161. doi: 10.3934/dcdsb.2013.18.147

## Dynamics of a dengue fever transmission model with crowding effect in human population and spatial variation

 1 Department of Mathematics, National Chung Cheng University, Min-Hsiung, Chia-Yi 621 2 Department of Natural Science in the Center for General Education, Chang Gung University, Kwei-Shan, Taoyuan 333, Taiwan

Received  September 2011 Revised  April 2012 Published  September 2012

Dengue fever is a virus-caused disease in the world. Since the high infection rate of dengue fever and high death rate of its severe form dengue hemorrhagic fever, the control of the spread of the disease is an important issue in the public health. In an effort to understand the dynamics of the spread of the disease, Esteva and Vargas [2] proposed a SIR v.s. SI epidemiological model without crowding effect and spatial heterogeneity. They found a threshold parameter $R_0,$ if $R_0<1,$ then the disease will die out; if $R_0>1,$ then the disease will always exist.
To investigate how the spatial heterogeneity and crowding effect influence the dynamics of the spread of the disease, we modify the autonomous system provided in [2] to obtain a reaction-diffusion system. We first define the basic reproduction number in an abstract way and then employ the comparison theorem and the theory of uniform persistence to study the global dynamics of the modified system. Basically, we show that the basic reproduction number is a threshold parameter that predicts whether the disease will die out or persist. Further, we demonstrate the basic reproduction number in an explicit way and construct suitable Lyapunov functionals to determine the global stability for the special case where coefficients are all constant.
Citation: Tzy-Wei Hwang, Feng-Bin Wang. Dynamics of a dengue fever transmission model with crowding effect in human population and spatial variation. Discrete & Continuous Dynamical Systems - B, 2013, 18 (1) : 147-161. doi: 10.3934/dcdsb.2013.18.147
##### References:
 [1] O. Diekmann, J. A. P. Heesterbeek and J. A. J. Metz, On the definition and the computation of the basic reproduction ratio $R_0$ in the models for infectious disease in heterogeneous populations,, J. Math. Biol., 28 (1990), 365. doi: 10.1007/BF00178324. Google Scholar [2] L. Esteva and C. Vargas, Analysis of a dengue disease transmission model,, Mathematical Biosciences, 150 (1998), 131. doi: 10.1016/S0025-5564(98)10003-2. Google Scholar [3] D. J. Gubler, Dengue,, in, II (1986), 213. Google Scholar [4] J. Hale, "Asymptotic Behavior of Dissipative Systems,", American Mathematical Society Providence, (1988). Google Scholar [5] D. Henry, "Geometric Theory of Semilinear Parabolic Equations,", Lecture Notes in Math., (1981). Google Scholar [6] S. B. Hsu, A survey of constructing lyapunov function for mathematical models in population biology,, Taiwanese Journal of Mathematics, 9 (2005), 151. Google Scholar [7] J. S. B. Hsu, J. Jiang and F. B. Wang, On a system of reaction-diffusion equations arising from competition with internal storage in an unstirred chemostat,, J. Diff. Eqns., 248 (2010), 2470. doi: 10.1016/j.jde.2009.12.014. Google Scholar [8] T.-W. Hwang and Y. Kuang, Host extinction dynamics in a simple parasite-host interaction model,, Can. Appl. Math. Q., 10 (2002), 473. Google Scholar [9] S. B. Hsu, F. B. Wang and X.-Q. Zhao, Dynamics of a periodically pulsed bio-reactor model with a hydraulic storage zone,, Journal of Dynamics and Differential Equations, 23 (2011), 817. doi: 10.1007/s10884-011-9224-3. Google Scholar [10] F. X. Jousset, Geographic A. aegypti strains and dengue-2 virus: susceptibility, ability to transmit to vertebrate and transovarial transmission,, Ann. Virol, 132 (1981). Google Scholar [11] A. Korobeinikov, Global properties of basic virus dynamics models,, Bulletin of Mathematical Biology, 66 (2004), 879. doi: 10.1016/j.bulm.2004.02.001. Google Scholar [12] A. Korobeinikov and P. K. Maini, A Lyapunov function and global properties for SIR and SEIR epidemiological models with nonlinear incidence,, Mathematical Biosciences and Engineering, 1 (2004), 57. Google Scholar [13] Y. Lou and X.-Q. Zhao, A reaction-diffusion malaria model with incubation period in the vector population,, J. Math. Biol., 62 (2011), 543. doi: 10.1007/s00285-010-0346-8. Google Scholar [14] R. H. Martin and H. L. Smith, Abstract functional differential equations and reaction-diffusion systems,, Trans. of A. M. S., 321 (1990), 1. Google Scholar [15] P. Magal and X.-Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems,, SIAM. J. Math. Anal., 37 (2005), 251. doi: 10.1137/S0036141003439173. Google Scholar [16] T. Ouyang, On the positive solutions of semilinear equations $\Delta u+ \lambda u-hu^p=0$ on the compact manifolds,, Trans. of A. M. S., 331 (1992), 503. doi: 10.2307/2154124. Google Scholar [17] A. Pazy, "Semigroups of Linear Operators and Applicationto Partial Differential Equations,", Springer-Verlag, (1983). Google Scholar [18] L. Rosen, D. A. Shroyer, R. B. Tesh, J. E. Freirer and J. Ch. Lien, Transovarial transmission of dengue viruses by mosquitoes A. Alhopictus and a. Aegypti,, Am. J. Trop. Med. Hyg. 32, 32 (1983). Google Scholar [19] M. H. Protter and H. F. Weinberger, "Maximum Principles in Differential Equations,", Springer-Verlag, (1984). Google Scholar [20] H. L. Smith, "Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems,", Math. Surveys Monogr 41, 41 (1995). Google Scholar [21] H. L. Smith and X.-Q. Zhao, Robust persistence for semidynamical systems,, Nonlinear Anal., 47 (2001), 6169. doi: 10.1016/S0362-546X(01)00678-2. Google Scholar [22] H. R. Thieme, Convergence results and a Poincare-Bendixson trichotomy for asymptotically autonomous differential equations,, J. Math. Biol., 30 (1992), 755. doi: 10.1007/BF00173267. Google Scholar [23] H. R. Thieme, Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity,, SIAM, 70 (2009), 188. Google Scholar [24] P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,, Math. Biosci., 180 (2002), 29. doi: 10.1016/S0025-5564(02)00108-6. Google Scholar [25] , Dengue haemorrhagic fever: Diagnosis, treatment and control,, World Health Organization, (1986). Google Scholar [26] F. B. Wang, A system of partial differential equations modeling the competition for two complementary resources in flowing habitats,, J. Diff. Eqns., 249 (2010), 2866. doi: 10.1016/j.jde.2010.07.031. Google Scholar [27] W. Wang and X.-Q. Zhao, A nonlocal and time-delayed reaction-diffusion model of dengue transmission,, SIAM J. Appl. Math., 71 (2011), 147. doi: 10.1137/090775890. Google Scholar [28] X.-Q. Zhao, "Dynamical Systems in Population Biology,", CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 16 (2003). Google Scholar

show all references

##### References:
 [1] O. Diekmann, J. A. P. Heesterbeek and J. A. J. Metz, On the definition and the computation of the basic reproduction ratio $R_0$ in the models for infectious disease in heterogeneous populations,, J. Math. Biol., 28 (1990), 365. doi: 10.1007/BF00178324. Google Scholar [2] L. Esteva and C. Vargas, Analysis of a dengue disease transmission model,, Mathematical Biosciences, 150 (1998), 131. doi: 10.1016/S0025-5564(98)10003-2. Google Scholar [3] D. J. Gubler, Dengue,, in, II (1986), 213. Google Scholar [4] J. Hale, "Asymptotic Behavior of Dissipative Systems,", American Mathematical Society Providence, (1988). Google Scholar [5] D. Henry, "Geometric Theory of Semilinear Parabolic Equations,", Lecture Notes in Math., (1981). Google Scholar [6] S. B. Hsu, A survey of constructing lyapunov function for mathematical models in population biology,, Taiwanese Journal of Mathematics, 9 (2005), 151. Google Scholar [7] J. S. B. Hsu, J. Jiang and F. B. Wang, On a system of reaction-diffusion equations arising from competition with internal storage in an unstirred chemostat,, J. Diff. Eqns., 248 (2010), 2470. doi: 10.1016/j.jde.2009.12.014. Google Scholar [8] T.-W. Hwang and Y. Kuang, Host extinction dynamics in a simple parasite-host interaction model,, Can. Appl. Math. Q., 10 (2002), 473. Google Scholar [9] S. B. Hsu, F. B. Wang and X.-Q. Zhao, Dynamics of a periodically pulsed bio-reactor model with a hydraulic storage zone,, Journal of Dynamics and Differential Equations, 23 (2011), 817. doi: 10.1007/s10884-011-9224-3. Google Scholar [10] F. X. Jousset, Geographic A. aegypti strains and dengue-2 virus: susceptibility, ability to transmit to vertebrate and transovarial transmission,, Ann. Virol, 132 (1981). Google Scholar [11] A. Korobeinikov, Global properties of basic virus dynamics models,, Bulletin of Mathematical Biology, 66 (2004), 879. doi: 10.1016/j.bulm.2004.02.001. Google Scholar [12] A. Korobeinikov and P. K. Maini, A Lyapunov function and global properties for SIR and SEIR epidemiological models with nonlinear incidence,, Mathematical Biosciences and Engineering, 1 (2004), 57. Google Scholar [13] Y. Lou and X.-Q. Zhao, A reaction-diffusion malaria model with incubation period in the vector population,, J. Math. Biol., 62 (2011), 543. doi: 10.1007/s00285-010-0346-8. Google Scholar [14] R. H. Martin and H. L. Smith, Abstract functional differential equations and reaction-diffusion systems,, Trans. of A. M. S., 321 (1990), 1. Google Scholar [15] P. Magal and X.-Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems,, SIAM. J. Math. Anal., 37 (2005), 251. doi: 10.1137/S0036141003439173. Google Scholar [16] T. Ouyang, On the positive solutions of semilinear equations $\Delta u+ \lambda u-hu^p=0$ on the compact manifolds,, Trans. of A. M. S., 331 (1992), 503. doi: 10.2307/2154124. Google Scholar [17] A. Pazy, "Semigroups of Linear Operators and Applicationto Partial Differential Equations,", Springer-Verlag, (1983). Google Scholar [18] L. Rosen, D. A. Shroyer, R. B. Tesh, J. E. Freirer and J. Ch. Lien, Transovarial transmission of dengue viruses by mosquitoes A. Alhopictus and a. Aegypti,, Am. J. Trop. Med. Hyg. 32, 32 (1983). Google Scholar [19] M. H. Protter and H. F. Weinberger, "Maximum Principles in Differential Equations,", Springer-Verlag, (1984). Google Scholar [20] H. L. Smith, "Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems,", Math. Surveys Monogr 41, 41 (1995). Google Scholar [21] H. L. Smith and X.-Q. Zhao, Robust persistence for semidynamical systems,, Nonlinear Anal., 47 (2001), 6169. doi: 10.1016/S0362-546X(01)00678-2. Google Scholar [22] H. R. Thieme, Convergence results and a Poincare-Bendixson trichotomy for asymptotically autonomous differential equations,, J. Math. Biol., 30 (1992), 755. doi: 10.1007/BF00173267. Google Scholar [23] H. R. Thieme, Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity,, SIAM, 70 (2009), 188. Google Scholar [24] P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,, Math. Biosci., 180 (2002), 29. doi: 10.1016/S0025-5564(02)00108-6. Google Scholar [25] , Dengue haemorrhagic fever: Diagnosis, treatment and control,, World Health Organization, (1986). Google Scholar [26] F. B. Wang, A system of partial differential equations modeling the competition for two complementary resources in flowing habitats,, J. Diff. Eqns., 249 (2010), 2866. doi: 10.1016/j.jde.2010.07.031. Google Scholar [27] W. Wang and X.-Q. Zhao, A nonlocal and time-delayed reaction-diffusion model of dengue transmission,, SIAM J. Appl. Math., 71 (2011), 147. doi: 10.1137/090775890. Google Scholar [28] X.-Q. Zhao, "Dynamical Systems in Population Biology,", CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 16 (2003). Google Scholar
 [1] Gerardo Chowell, R. Fuentes, A. Olea, X. Aguilera, H. Nesse, J. M. Hyman. The basic reproduction number $R_0$ and effectiveness of reactive interventions during dengue epidemics: The 2002 dengue outbreak in Easter Island, Chile. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1455-1474. doi: 10.3934/mbe.2013.10.1455 [2] Jing-Jing Xiang, Juan Wang, Li-Ming Cai. Global stability of the dengue disease transmission models. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2217-2232. doi: 10.3934/dcdsb.2015.20.2217 [3] Hui Cao, Yicang Zhou. The basic reproduction number of discrete SIR and SEIS models with periodic parameters. Discrete & Continuous Dynamical Systems - B, 2013, 18 (1) : 37-56. doi: 10.3934/dcdsb.2013.18.37 [4] Tianhui Yang, Lei Zhang. Remarks on basic reproduction ratios for periodic abstract functional differential equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-12. doi: 10.3934/dcdsb.2019166 [5] Nicolas Bacaër, Xamxinur Abdurahman, Jianli Ye, Pierre Auger. On the basic reproduction number $R_0$ in sexual activity models for HIV/AIDS epidemics: Example from Yunnan, China. Mathematical Biosciences & Engineering, 2007, 4 (4) : 595-607. doi: 10.3934/mbe.2007.4.595 [6] Ling Xue, Caterina Scoglio. Network-level reproduction number and extinction threshold for vector-borne diseases. Mathematical Biosciences & Engineering, 2015, 12 (3) : 565-584. doi: 10.3934/mbe.2015.12.565 [7] Hal L. Smith, Horst R. Thieme. Persistence and global stability for a class of discrete time structured population models. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4627-4646. doi: 10.3934/dcds.2013.33.4627 [8] Danfeng Pang, Hua Nie, Jianhua Wu. Single phytoplankton species growth with light and crowding effect in a water column. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 41-74. doi: 10.3934/dcds.2019003 [9] Sebastian J. Schreiber. On persistence and extinction for randomly perturbed dynamical systems. Discrete & Continuous Dynamical Systems - B, 2007, 7 (2) : 457-463. doi: 10.3934/dcdsb.2007.7.457 [10] Shangbing Ai. Global stability of equilibria in a tick-borne disease model. Mathematical Biosciences & Engineering, 2007, 4 (4) : 567-572. doi: 10.3934/mbe.2007.4.567 [11] C. Connell McCluskey. Global stability for an $SEI$ model of infectious disease with age structure and immigration of infecteds. Mathematical Biosciences & Engineering, 2016, 13 (2) : 381-400. doi: 10.3934/mbe.2015008 [12] Cruz Vargas-De-León, Alberto d'Onofrio. Global stability of infectious disease models with contact rate as a function of prevalence index. Mathematical Biosciences & Engineering, 2017, 14 (4) : 1019-1033. doi: 10.3934/mbe.2017053 [13] Tom Burr, Gerardo Chowell. The reproduction number $R_t$ in structured and nonstructured populations. Mathematical Biosciences & Engineering, 2009, 6 (2) : 239-259. doi: 10.3934/mbe.2009.6.239 [14] Deqiong Ding, Wendi Qin, Xiaohua Ding. Lyapunov functions and global stability for a discretized multigroup SIR epidemic model. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 1971-1981. doi: 10.3934/dcdsb.2015.20.1971 [15] Wen Jin, Horst R. Thieme. Persistence and extinction of diffusing populations with two sexes and short reproductive season. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3209-3218. doi: 10.3934/dcdsb.2014.19.3209 [16] Keng Deng, Yixiang Wu. Extinction and uniform strong persistence of a size-structured population model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 831-840. doi: 10.3934/dcdsb.2017041 [17] Wen Jin, Horst R. Thieme. An extinction/persistence threshold for sexually reproducing populations: The cone spectral radius. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 447-470. doi: 10.3934/dcdsb.2016.21.447 [18] Paul L. Salceanu, H. L. Smith. Lyapunov exponents and persistence in discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2009, 12 (1) : 187-203. doi: 10.3934/dcdsb.2009.12.187 [19] Frédéric Grognard, Frédéric Mazenc, Alain Rapaport. Polytopic Lyapunov functions for persistence analysis of competing species. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 73-93. doi: 10.3934/dcdsb.2007.8.73 [20] Antoine Perasso. Global stability and uniform persistence for an infection load-structured SI model with exponential growth velocity. Communications on Pure & Applied Analysis, 2019, 18 (1) : 15-32. doi: 10.3934/cpaa.2019002

2018 Impact Factor: 1.008

## Metrics

• HTML views (0)
• Cited by (6)

• on AIMS