July  2013, 18(5): 1345-1360. doi: 10.3934/dcdsb.2013.18.1345

On the Mountain-Pass algorithm for the quasi-linear Schrödinger equation

1. 

Université de Mons, Institut Complexys, Département de Mathématique, Service d'Analyse Numérique, Place du Parc, 20, B-7000 Mons, Belgium, Belgium

2. 

Dipartimento di Informatica, Università degli Studi di Verona, Cá Vignal 2, Strada Le Grazie 15, I-37134 Veron

Received  May 2012 Revised  December 2012 Published  March 2013

We discuss the application of the Mountain Pass Algorithm to the so-called quasi-linear Schrödinger equation, which is naturally associated with a class of nonsmooth functionals so that the classical algorithm cannot directly be used. A change of variable allows us to deal with the lack of regularity. We establish the convergence of a mountain pass algorithm in this setting. Some numerical experiments are also performed and lead to some conjectures.
Citation: Christopher Grumiau, Marco Squassina, Christophe Troestler. On the Mountain-Pass algorithm for the quasi-linear Schrödinger equation. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1345-1360. doi: 10.3934/dcdsb.2013.18.1345
References:
[1]

A. Ambrosetti and Z.-Q. Wang, Positive solutions to a class of quasilinear elliptic equations on $\mathbbR$,, Disc. Cont. Dyna. Syst. - A, 9 (2003), 55. doi: 10.3934/dcds.2003.9.55. Google Scholar

[2]

M. Caliari and M. Squassina, Numerical computation of soliton dynamics for NLS equations in a driving potential,, Electron. J. Differential Equations, 89 (2010), 1. Google Scholar

[3]

M. Caliari and M. Squassina, On a bifurcation value related to quasi-linear Schrödinger equations,, J. Fixed Point Theory Appl., (). Google Scholar

[4]

Y. S. Choi and P. J. McKenna, A mountain pass method for the numerical solution of semilinear elliptic problems,, Nonlinear Anal., 20 (1993), 417. doi: 10.1016/0362-546X(93)90147-K. Google Scholar

[5]

M. Colin and L. Jeanjean, Solutions for a quasilinear Schrödinger equation: A dual approach,, Nonlinear Anal., 56 (2004), 213. doi: 10.1016/j.na.2003.09.008. Google Scholar

[6]

M. Colin, L. Jeanjean and M. Squassina, Stability and instability results for standing waves of quasi-linear Schrödinger equations,, Nonlinearity, 23 (2010), 1353. doi: 10.1088/0951-7715/23/6/006. Google Scholar

[7]

J.-N. Corvellec, M. Degiovanni and M. Marzocchi, Deformation properties for continuous functionals and critical point theory,, Topol. Methods Nonlinear Anal., 1 (1993), 151. Google Scholar

[8]

W. Y. Ding and W. M. Ni, On the existence of positive entire solutions of a semilinear elliptic equation,, Arch. Rational Mech. Anal., 91 (1986), 283. doi: 10.1007/BF00282336. Google Scholar

[9]

J. M. do Ó and U. Severo, Solitary waves for a class of quasilinear Schrödinger equations in dimension two,, Calculus of Variations, 38 (2010), 275. doi: 10.1007/s00526-009-0286-6. Google Scholar

[10]

B. Gidas, W. M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle,, Comm. Math. Phys., 68 (1979), 209. Google Scholar

[11]

F. Gladiali and M. Squassina, Uniqueness of ground states for a class of quasi-linear elliptic equations,, Adv. Nonlinear Anal., 1 (2012), 159. doi: 10.1515/ana-2011-0001. Google Scholar

[12]

E. Gloss, Existence and concentration of positive solutions for a quasilinear equation in $\mathbbR^N$,, J. Math. Anal. Appl., 371 (2010), 465. doi: 10.1016/j.jmaa.2010.05.033. Google Scholar

[13]

C. Grumiau and C. Troestler, Convergence of a mountain pass type algorithm for strongly indefinite problems and systems,, Preprint, (). Google Scholar

[14]

L. Jeanjean and K. Tanaka, A remark on least energy solutions in $\mathbbR^N$,, Proc. Amer. Math. Soc., 131 (2002), 2399. doi: 10.1090/S0002-9939-02-06821-1. Google Scholar

[15]

A. S. Lewis and C. H. J. Pang, Level set methods for finding critical points of mountain pass type,, Nonlinear Analysis, 74 (2011), 4058. doi: 10.1016/j.na.2011.03.039. Google Scholar

[16]

Y. Li and J. Zhou, A minimax method for finding multiple critical points and its applications to semilinear elliptic pde's,, SIAM Sci. Comp., 23 (2001), 840. doi: 10.1137/S1064827599365641. Google Scholar

[17]

Y. Li and J. Zhou, Convergence results of a local minimax method for finding multiple critical points,, SIAM Sci. Comp., 24 (2002), 865. doi: 10.1137/S1064827500379732. Google Scholar

[18]

E. Lieb, On the lowest eigenvalue of the Laplacian for the intersection of two domains,, Invent. Math., 74 (1983), 441. doi: 10.1007/BF01394245. Google Scholar

[19]

J. Q. Liu, Y. Q. Wang and Z. Q. Wang, Solutions for quasi-linear Schrödinger equations via the Nehari method,, Comm. Partial Differential Equations, 29 (2004), 879. doi: 10.1081/PDE-120037335. Google Scholar

[20]

P. Pucci and J. Serrin, "The Maximum Principle,", Progress in Nonlinear Differential Equations and Their Applications, 73 (2007). Google Scholar

[21]

J. R. Shewchuk, Delaunay refinement algorithms for triangular mesh generation,, Computational Geometry: Theory and Applications, 22 (2002), 21. doi: 10.1016/S0925-7721(01)00047-5. Google Scholar

[22]

A. Szulkin and T. Weth, Ground state solutions for some indefinite variational problems,, J. Funct. Anal., 257 (2009), 3802. doi: 10.1016/j.jfa.2009.09.013. Google Scholar

[23]

N. Tacheny and C. Troestler, A mountain pass algorithm with projector,, J. Comput. Appl. Math., 236 (2012), 2025. doi: 10.1016/j.cam.2011.11.011. Google Scholar

[24]

M. Willem, "Minimax Theorems,", Progress in Nonlinear Differential Equations and Their Applications, 24 (1996). doi: 10.1007/978-1-4612-4146-1. Google Scholar

show all references

References:
[1]

A. Ambrosetti and Z.-Q. Wang, Positive solutions to a class of quasilinear elliptic equations on $\mathbbR$,, Disc. Cont. Dyna. Syst. - A, 9 (2003), 55. doi: 10.3934/dcds.2003.9.55. Google Scholar

[2]

M. Caliari and M. Squassina, Numerical computation of soliton dynamics for NLS equations in a driving potential,, Electron. J. Differential Equations, 89 (2010), 1. Google Scholar

[3]

M. Caliari and M. Squassina, On a bifurcation value related to quasi-linear Schrödinger equations,, J. Fixed Point Theory Appl., (). Google Scholar

[4]

Y. S. Choi and P. J. McKenna, A mountain pass method for the numerical solution of semilinear elliptic problems,, Nonlinear Anal., 20 (1993), 417. doi: 10.1016/0362-546X(93)90147-K. Google Scholar

[5]

M. Colin and L. Jeanjean, Solutions for a quasilinear Schrödinger equation: A dual approach,, Nonlinear Anal., 56 (2004), 213. doi: 10.1016/j.na.2003.09.008. Google Scholar

[6]

M. Colin, L. Jeanjean and M. Squassina, Stability and instability results for standing waves of quasi-linear Schrödinger equations,, Nonlinearity, 23 (2010), 1353. doi: 10.1088/0951-7715/23/6/006. Google Scholar

[7]

J.-N. Corvellec, M. Degiovanni and M. Marzocchi, Deformation properties for continuous functionals and critical point theory,, Topol. Methods Nonlinear Anal., 1 (1993), 151. Google Scholar

[8]

W. Y. Ding and W. M. Ni, On the existence of positive entire solutions of a semilinear elliptic equation,, Arch. Rational Mech. Anal., 91 (1986), 283. doi: 10.1007/BF00282336. Google Scholar

[9]

J. M. do Ó and U. Severo, Solitary waves for a class of quasilinear Schrödinger equations in dimension two,, Calculus of Variations, 38 (2010), 275. doi: 10.1007/s00526-009-0286-6. Google Scholar

[10]

B. Gidas, W. M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle,, Comm. Math. Phys., 68 (1979), 209. Google Scholar

[11]

F. Gladiali and M. Squassina, Uniqueness of ground states for a class of quasi-linear elliptic equations,, Adv. Nonlinear Anal., 1 (2012), 159. doi: 10.1515/ana-2011-0001. Google Scholar

[12]

E. Gloss, Existence and concentration of positive solutions for a quasilinear equation in $\mathbbR^N$,, J. Math. Anal. Appl., 371 (2010), 465. doi: 10.1016/j.jmaa.2010.05.033. Google Scholar

[13]

C. Grumiau and C. Troestler, Convergence of a mountain pass type algorithm for strongly indefinite problems and systems,, Preprint, (). Google Scholar

[14]

L. Jeanjean and K. Tanaka, A remark on least energy solutions in $\mathbbR^N$,, Proc. Amer. Math. Soc., 131 (2002), 2399. doi: 10.1090/S0002-9939-02-06821-1. Google Scholar

[15]

A. S. Lewis and C. H. J. Pang, Level set methods for finding critical points of mountain pass type,, Nonlinear Analysis, 74 (2011), 4058. doi: 10.1016/j.na.2011.03.039. Google Scholar

[16]

Y. Li and J. Zhou, A minimax method for finding multiple critical points and its applications to semilinear elliptic pde's,, SIAM Sci. Comp., 23 (2001), 840. doi: 10.1137/S1064827599365641. Google Scholar

[17]

Y. Li and J. Zhou, Convergence results of a local minimax method for finding multiple critical points,, SIAM Sci. Comp., 24 (2002), 865. doi: 10.1137/S1064827500379732. Google Scholar

[18]

E. Lieb, On the lowest eigenvalue of the Laplacian for the intersection of two domains,, Invent. Math., 74 (1983), 441. doi: 10.1007/BF01394245. Google Scholar

[19]

J. Q. Liu, Y. Q. Wang and Z. Q. Wang, Solutions for quasi-linear Schrödinger equations via the Nehari method,, Comm. Partial Differential Equations, 29 (2004), 879. doi: 10.1081/PDE-120037335. Google Scholar

[20]

P. Pucci and J. Serrin, "The Maximum Principle,", Progress in Nonlinear Differential Equations and Their Applications, 73 (2007). Google Scholar

[21]

J. R. Shewchuk, Delaunay refinement algorithms for triangular mesh generation,, Computational Geometry: Theory and Applications, 22 (2002), 21. doi: 10.1016/S0925-7721(01)00047-5. Google Scholar

[22]

A. Szulkin and T. Weth, Ground state solutions for some indefinite variational problems,, J. Funct. Anal., 257 (2009), 3802. doi: 10.1016/j.jfa.2009.09.013. Google Scholar

[23]

N. Tacheny and C. Troestler, A mountain pass algorithm with projector,, J. Comput. Appl. Math., 236 (2012), 2025. doi: 10.1016/j.cam.2011.11.011. Google Scholar

[24]

M. Willem, "Minimax Theorems,", Progress in Nonlinear Differential Equations and Their Applications, 24 (1996). doi: 10.1007/978-1-4612-4146-1. Google Scholar

[1]

Dmitry Glotov, P. J. McKenna. Numerical mountain pass solutions of Ginzburg-Landau type equations. Communications on Pure & Applied Analysis, 2008, 7 (6) : 1345-1359. doi: 10.3934/cpaa.2008.7.1345

[2]

Ian Schindler, Kyril Tintarev. Mountain pass solutions to semilinear problems with critical nonlinearity. Conference Publications, 2007, 2007 (Special) : 912-919. doi: 10.3934/proc.2007.2007.912

[3]

Claudianor O. Alves, Giovany M. Figueiredo, Marcelo F. Furtado. Multiplicity of solutions for elliptic systems via local Mountain Pass method. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1745-1758. doi: 10.3934/cpaa.2009.8.1745

[4]

Dorota Bors. Application of Mountain Pass Theorem to superlinear equations with fractional Laplacian controlled by distributed parameters and boundary data. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 29-43. doi: 10.3934/dcdsb.2018003

[5]

Vitali Liskevich, Igor I. Skrypnik. Pointwise estimates for solutions of singular quasi-linear parabolic equations. Discrete & Continuous Dynamical Systems - S, 2013, 6 (4) : 1029-1042. doi: 10.3934/dcdss.2013.6.1029

[6]

Vasily Denisov and Andrey Muravnik. On asymptotic behavior of solutions of the Dirichlet problem in half-space for linear and quasi-linear elliptic equations. Electronic Research Announcements, 2003, 9: 88-93.

[7]

Yongqin Liu, Shuichi Kawashima. Global existence and asymptotic behavior of solutions for quasi-linear dissipative plate equation. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 1113-1139. doi: 10.3934/dcds.2011.29.1113

[8]

Lu Yang, Meihua Yang, Peter E. Kloeden. Pullback attractors for non-autonomous quasi-linear parabolic equations with dynamical boundary conditions. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2635-2651. doi: 10.3934/dcdsb.2012.17.2635

[9]

Guangying Lv, Mingxin Wang. Existence, uniqueness and stability of traveling wave fronts of discrete quasi-linear equations with delay. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 415-433. doi: 10.3934/dcdsb.2010.13.415

[10]

Kunio Hidano, Dongbing Zha. Remarks on a system of quasi-linear wave equations in 3D satisfying the weak null condition. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1735-1767. doi: 10.3934/cpaa.2019082

[11]

Dianmo Li, Zufei Ma, Baoyu Xie. Quantifying the danger for Parnassius nomion on Beijing Dongling mountain. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 679-686. doi: 10.3934/dcdsb.2004.4.679

[12]

Tuhin Ghosh, Karthik Iyer. Cloaking for a quasi-linear elliptic partial differential equation. Inverse Problems & Imaging, 2018, 12 (2) : 461-491. doi: 10.3934/ipi.2018020

[13]

Timur Akhunov. Local well-posedness of quasi-linear systems generalizing KdV. Communications on Pure & Applied Analysis, 2013, 12 (2) : 899-921. doi: 10.3934/cpaa.2013.12.899

[14]

Boris Buffoni, Laurent Landry. Multiplicity of homoclinic orbits in quasi-linear autonomous Lagrangian systems. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 75-116. doi: 10.3934/dcds.2010.27.75

[15]

Teemu Tyni, Valery Serov. Inverse scattering problem for quasi-linear perturbation of the biharmonic operator on the line. Inverse Problems & Imaging, 2019, 13 (1) : 159-175. doi: 10.3934/ipi.2019009

[16]

Yingte Sun, Xiaoping Yuan. Quasi-periodic solution of quasi-linear fifth-order KdV equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (12) : 6241-6285. doi: 10.3934/dcds.2018268

[17]

Misha Bialy, Andrey E. Mironov. Rich quasi-linear system for integrable geodesic flows on 2-torus. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 81-90. doi: 10.3934/dcds.2011.29.81

[18]

Wen-Rong Dai. Formation of singularities to quasi-linear hyperbolic systems with initial data of small BV norm. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3501-3524. doi: 10.3934/dcds.2012.32.3501

[19]

Massimo Lanza de Cristoforis, aolo Musolino. A quasi-linear heat transmission problem in a periodic two-phase dilute composite. A functional analytic approach. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2509-2542. doi: 10.3934/cpaa.2014.13.2509

[20]

Simone Creo, Valerio Regis Durante. Convergence and density results for parabolic quasi-linear Venttsel' problems in fractal domains. Discrete & Continuous Dynamical Systems - S, 2019, 12 (1) : 65-90. doi: 10.3934/dcdss.2019005

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (1)

[Back to Top]