July  2013, 18(5): 1275-1290. doi: 10.3934/dcdsb.2013.18.1275

Finite-time quenching of competing species with constrained boundary evaporation

1. 

CGG, Houston, TX 77072, United States

2. 

Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, Canada

3. 

Department of Mathematics, Tulane University, New Orleans, LA 70118, United States

Received  July 2012 Revised  February 2013 Published  March 2013

We consider a class of SKT type reaction-cross diffusion models with vanishing random diffusion coefficients. For homogeneous Dirichlet boundary conditions we prove non-existence of global-in-time non-trivial non-negative smooth solutions. Some numerical results are also presented, suggesting the possibility of finite-time extinction.
Citation: Shu Dai, Dong Li, Kun Zhao. Finite-time quenching of competing species with constrained boundary evaporation. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1275-1290. doi: 10.3934/dcdsb.2013.18.1275
References:
[1]

D. Blatt and H. Comins, Prey-predator models in spatially heterogeneous environments,, J. Theoretical Biology, 48 (1974), 75. doi: 10.1016/0022-5193(74)90180-5. Google Scholar

[2]

L. Chen and A. Jüngel, Analysis of a multidimensional parabolic population model with strong cross-diffusion,, SIAM J. Math. Anal., 36 (2004), 301. doi: 10.1137/S0036141003427798. Google Scholar

[3]

L. Chen and A. Jüngel, Analysis of a parabolic cross-diffusion population model without self-diffusion,, J. Differential Equations, 224 (2006), 39. doi: 10.1016/j.jde.2005.08.002. Google Scholar

[4]

Y. Choi, R. Lui and Y. Yamada, Existence of global solutions for the Shigesada-Kawasaki-Teramoto model with weak cross-diffusion,, Discrete Contin. Dyn. Syst., 9 (2003), 1193. doi: 10.3934/dcds.2003.9.1193. Google Scholar

[5]

Y. Choi, R. Lui and Y. Yamada, Existence of global solutions for the Shigesada-Kawasaki-Teramoto model with strongly coupled cross-diffusion,, Discrete Contin. Dyn. Syst., 10 (2004), 719. doi: 10.3934/dcds.2004.10.719. Google Scholar

[6]

P. Deuring, An initial-boundary value problem for a certain density-dependent diffusion system,, Math. Z., 194 (1987), 375. doi: 10.1007/BF01162244. Google Scholar

[7]

P. Fife, Asymptotic states for equations of reaction and diffusion,, Bull. Amer. Math. Soc., 84 (1978), 693. Google Scholar

[8]

G. Galiano, M. Garzón and A. Jüngel, Semi-discretization in time and numerical convergence of solutions of a nonlinear cross-diffusion population model,, Numer. Math., 93 (2003), 655. doi: 10.1007/s002110200406. Google Scholar

[9]

W. Gurney and R. Nisbet, The regulation of inhomogeneous populations,, J. Theoretical Biology, 52 (1975), 441. doi: 10.1016/0022-5193(75)90011-9. Google Scholar

[10]

W. Gurney and R. Nisbet, A note on non-linear population transport,, J. Theoretical Biology, 56 (1976), 249. doi: 10.1016/S0022-5193(76)80056-2. Google Scholar

[11]

G. Hardin, The competitive exclusion principle,, Science, 131 (1960), 1292. doi: 10.1126/science.131.3409.1292. Google Scholar

[12]

J. Jackson and L. Segel, Dissipative structure: An explanation and an ecological example,, J. Theoretical Biology, 37 (1972), 545. doi: 10.1016/0022-5193(72)90090-2. Google Scholar

[13]

E. Keller and L. Segel, Initiation of slime mold aggregation viewed as an instability,, J. Theoretical Biology, 26 (1970), 399. doi: 10.1016/0022-5193(70)90092-5. Google Scholar

[14]

J. Kim, Smooth solutions to a quasilinear system of diffusion equations for a certain population model,, Nonlinear Analysis, 8 (1984), 1121. doi: 10.1016/0362-546X(84)90115-9. Google Scholar

[15]

D. Le, Global existence for a class of strongly coupled parabolic systems,, Ann. Mat. Pura Appl., 185 (2006), 133. doi: 10.1007/s10231-004-0131-7. Google Scholar

[16]

D. Le and T. Nguyen, Global existence for a class of triangular parabolic systems on domains of arbitrary dimension,, Proc. Amer. Math. Soc., 133 (2005), 1985. doi: 10.1090/S0002-9939-05-07867-6. Google Scholar

[17]

D. Le, L. Nguyen and T. Nguyen, Shigesada-Kawasaki-Teramoto model on higher dimensional domains,, Electron. J. Differential Equations, (2003). Google Scholar

[18]

S. Levin, Dispersion and Population Interactions,, American Naturalist, 108 (1974), 207. Google Scholar

[19]

S. Levin, Some mathematical questions in biology - VII,, Lectures on Mathematics in the Life Sciences, 8 (1976). Google Scholar

[20]

S. Levin, Studies in mathematical biology. Part II. Populations and communities,, MAA Studies in Mathematics, 16 (1978). Google Scholar

[21]

Y. Li and C. Zhao, Global existence of solutions to a cross-diffusion system in higher dimensional domains,, Discrete Contin. Dyn. Syst., 12 (2005), 185. Google Scholar

[22]

Y. Lou, S. Martinez and W. Ni, On $3\times 3$ Lotka-Volterra competition systems with cross-diffusion,, Discrete Contin. Dyn. Syst., 6 (2000), 175. Google Scholar

[23]

Y. Lou and W. Ni, Diffusion, self-diffusion and cross-diffusion,, J. Differential Equations, 131 (1996), 79. doi: 10.1006/jdeq.1996.0157. Google Scholar

[24]

Y. Lou, W. Ni and Y. Wu, On the global existence of a cross-diffusion system,, Discrete Contin. Dyn. Syst., 4 (1998), 193. doi: 10.3934/dcds.1998.4.193. Google Scholar

[25]

M. Mimura and K. Kawasaki, Spatial segregation in competitive interaction-diffusion equations,, J. Math. Biol., 9 (1980), 49. doi: 10.1007/BF00276035. Google Scholar

[26]

M. Morisita, Habitat preference and evaluation of environment of an animal. Experimental studies on the population density of an ant-lion, Glenuroides japonicus M'L. (I),, Physiol. Ecol. Japan, 5 (1952), 1. Google Scholar

[27]

A. Okubo, "Ecology and Diffusion,", Tokyo: Tsukiji Shokan, (1975). Google Scholar

[28]

M. Pozio and A. Tesei, Global existence of solutions for a strongly coupled quasilinear parabolic system,, Nonlinear Anal., 14 (1990), 657. doi: 10.1016/0362-546X(90)90043-G. Google Scholar

[29]

R. Redlinger, Existence of the global attractor for a strongly coupled parabolic system arising in population dynamics,, J. Differential Equations, 118 (1995), 219. doi: 10.1006/jdeq.1995.1073. Google Scholar

[30]

G. Rosen, Effects of diffusion on the stability of the equilibrium in multi-species ecological systems,, Bull. Math. Biol., 39 (1977), 373. Google Scholar

[31]

W. Ruan, Positive steady-state solutions of a competing reaction-diffusion system with large cross-diffusion coefficients,, J. Math. Anal. Appl., 197 (1996), 558. doi: 10.1006/jmaa.1996.0039. Google Scholar

[32]

K. Ryu and I. Ahn, Positive steady-states for two interacting species models with linear self-cross diffusions,, Discrete Contin. Dyn. Syst., 9 (2003), 1049. doi: 10.3934/dcds.2003.9.1049. Google Scholar

[33]

N. Shigesada, K. Kawasaki and E. Teramoto, Spatial segregation of interacting species,, J. Theo. Biol., 79 (1979), 83. doi: 10.1016/0022-5193(79)90258-3. Google Scholar

[34]

S. Shim, Uniform boundedness and convergence of solutions to cross-diffusion systems,, J. Differential Equations, 185 (2002), 281. doi: 10.1006/jdeq.2002.4169. Google Scholar

[35]

P. Tuoc, Global existence of solutions to Shigesada-Kawasaki-Teramoto cross-diffusion systems on domains of arbitrary dimensions,, Proc. Amer. Math. Soc., 135 (2007), 3933. doi: 10.1090/S0002-9939-07-08978-2. Google Scholar

[36]

P. Tuoc, On global existence of solutions to a cross-diffusion system,, J. Math. Anal. Appl., 343 (2008), 826. doi: 10.1016/j.jmaa.2008.01.089. Google Scholar

[37]

A. Turing, The Chemical Basis of Morphogenesis,, Phil. Transact. Royal Soc. B, 237 (1952), 37. doi: 10.1098/rstb.1952.0012. Google Scholar

[38]

Y. Wu, Qualitative studies of solutions for some cross-diffusion systems,, China-Japan Symposium on Reaction-Diffusion Equations and their Applications and Computational Aspects (Shanghai, (1997), 177. Google Scholar

[39]

A. Yagi, Global solution to some quasilinear parabolic system in population dynamics,, Nonlinear Analysis, 21 (1993), 603. doi: 10.1016/0362-546X(93)90004-C. Google Scholar

show all references

References:
[1]

D. Blatt and H. Comins, Prey-predator models in spatially heterogeneous environments,, J. Theoretical Biology, 48 (1974), 75. doi: 10.1016/0022-5193(74)90180-5. Google Scholar

[2]

L. Chen and A. Jüngel, Analysis of a multidimensional parabolic population model with strong cross-diffusion,, SIAM J. Math. Anal., 36 (2004), 301. doi: 10.1137/S0036141003427798. Google Scholar

[3]

L. Chen and A. Jüngel, Analysis of a parabolic cross-diffusion population model without self-diffusion,, J. Differential Equations, 224 (2006), 39. doi: 10.1016/j.jde.2005.08.002. Google Scholar

[4]

Y. Choi, R. Lui and Y. Yamada, Existence of global solutions for the Shigesada-Kawasaki-Teramoto model with weak cross-diffusion,, Discrete Contin. Dyn. Syst., 9 (2003), 1193. doi: 10.3934/dcds.2003.9.1193. Google Scholar

[5]

Y. Choi, R. Lui and Y. Yamada, Existence of global solutions for the Shigesada-Kawasaki-Teramoto model with strongly coupled cross-diffusion,, Discrete Contin. Dyn. Syst., 10 (2004), 719. doi: 10.3934/dcds.2004.10.719. Google Scholar

[6]

P. Deuring, An initial-boundary value problem for a certain density-dependent diffusion system,, Math. Z., 194 (1987), 375. doi: 10.1007/BF01162244. Google Scholar

[7]

P. Fife, Asymptotic states for equations of reaction and diffusion,, Bull. Amer. Math. Soc., 84 (1978), 693. Google Scholar

[8]

G. Galiano, M. Garzón and A. Jüngel, Semi-discretization in time and numerical convergence of solutions of a nonlinear cross-diffusion population model,, Numer. Math., 93 (2003), 655. doi: 10.1007/s002110200406. Google Scholar

[9]

W. Gurney and R. Nisbet, The regulation of inhomogeneous populations,, J. Theoretical Biology, 52 (1975), 441. doi: 10.1016/0022-5193(75)90011-9. Google Scholar

[10]

W. Gurney and R. Nisbet, A note on non-linear population transport,, J. Theoretical Biology, 56 (1976), 249. doi: 10.1016/S0022-5193(76)80056-2. Google Scholar

[11]

G. Hardin, The competitive exclusion principle,, Science, 131 (1960), 1292. doi: 10.1126/science.131.3409.1292. Google Scholar

[12]

J. Jackson and L. Segel, Dissipative structure: An explanation and an ecological example,, J. Theoretical Biology, 37 (1972), 545. doi: 10.1016/0022-5193(72)90090-2. Google Scholar

[13]

E. Keller and L. Segel, Initiation of slime mold aggregation viewed as an instability,, J. Theoretical Biology, 26 (1970), 399. doi: 10.1016/0022-5193(70)90092-5. Google Scholar

[14]

J. Kim, Smooth solutions to a quasilinear system of diffusion equations for a certain population model,, Nonlinear Analysis, 8 (1984), 1121. doi: 10.1016/0362-546X(84)90115-9. Google Scholar

[15]

D. Le, Global existence for a class of strongly coupled parabolic systems,, Ann. Mat. Pura Appl., 185 (2006), 133. doi: 10.1007/s10231-004-0131-7. Google Scholar

[16]

D. Le and T. Nguyen, Global existence for a class of triangular parabolic systems on domains of arbitrary dimension,, Proc. Amer. Math. Soc., 133 (2005), 1985. doi: 10.1090/S0002-9939-05-07867-6. Google Scholar

[17]

D. Le, L. Nguyen and T. Nguyen, Shigesada-Kawasaki-Teramoto model on higher dimensional domains,, Electron. J. Differential Equations, (2003). Google Scholar

[18]

S. Levin, Dispersion and Population Interactions,, American Naturalist, 108 (1974), 207. Google Scholar

[19]

S. Levin, Some mathematical questions in biology - VII,, Lectures on Mathematics in the Life Sciences, 8 (1976). Google Scholar

[20]

S. Levin, Studies in mathematical biology. Part II. Populations and communities,, MAA Studies in Mathematics, 16 (1978). Google Scholar

[21]

Y. Li and C. Zhao, Global existence of solutions to a cross-diffusion system in higher dimensional domains,, Discrete Contin. Dyn. Syst., 12 (2005), 185. Google Scholar

[22]

Y. Lou, S. Martinez and W. Ni, On $3\times 3$ Lotka-Volterra competition systems with cross-diffusion,, Discrete Contin. Dyn. Syst., 6 (2000), 175. Google Scholar

[23]

Y. Lou and W. Ni, Diffusion, self-diffusion and cross-diffusion,, J. Differential Equations, 131 (1996), 79. doi: 10.1006/jdeq.1996.0157. Google Scholar

[24]

Y. Lou, W. Ni and Y. Wu, On the global existence of a cross-diffusion system,, Discrete Contin. Dyn. Syst., 4 (1998), 193. doi: 10.3934/dcds.1998.4.193. Google Scholar

[25]

M. Mimura and K. Kawasaki, Spatial segregation in competitive interaction-diffusion equations,, J. Math. Biol., 9 (1980), 49. doi: 10.1007/BF00276035. Google Scholar

[26]

M. Morisita, Habitat preference and evaluation of environment of an animal. Experimental studies on the population density of an ant-lion, Glenuroides japonicus M'L. (I),, Physiol. Ecol. Japan, 5 (1952), 1. Google Scholar

[27]

A. Okubo, "Ecology and Diffusion,", Tokyo: Tsukiji Shokan, (1975). Google Scholar

[28]

M. Pozio and A. Tesei, Global existence of solutions for a strongly coupled quasilinear parabolic system,, Nonlinear Anal., 14 (1990), 657. doi: 10.1016/0362-546X(90)90043-G. Google Scholar

[29]

R. Redlinger, Existence of the global attractor for a strongly coupled parabolic system arising in population dynamics,, J. Differential Equations, 118 (1995), 219. doi: 10.1006/jdeq.1995.1073. Google Scholar

[30]

G. Rosen, Effects of diffusion on the stability of the equilibrium in multi-species ecological systems,, Bull. Math. Biol., 39 (1977), 373. Google Scholar

[31]

W. Ruan, Positive steady-state solutions of a competing reaction-diffusion system with large cross-diffusion coefficients,, J. Math. Anal. Appl., 197 (1996), 558. doi: 10.1006/jmaa.1996.0039. Google Scholar

[32]

K. Ryu and I. Ahn, Positive steady-states for two interacting species models with linear self-cross diffusions,, Discrete Contin. Dyn. Syst., 9 (2003), 1049. doi: 10.3934/dcds.2003.9.1049. Google Scholar

[33]

N. Shigesada, K. Kawasaki and E. Teramoto, Spatial segregation of interacting species,, J. Theo. Biol., 79 (1979), 83. doi: 10.1016/0022-5193(79)90258-3. Google Scholar

[34]

S. Shim, Uniform boundedness and convergence of solutions to cross-diffusion systems,, J. Differential Equations, 185 (2002), 281. doi: 10.1006/jdeq.2002.4169. Google Scholar

[35]

P. Tuoc, Global existence of solutions to Shigesada-Kawasaki-Teramoto cross-diffusion systems on domains of arbitrary dimensions,, Proc. Amer. Math. Soc., 135 (2007), 3933. doi: 10.1090/S0002-9939-07-08978-2. Google Scholar

[36]

P. Tuoc, On global existence of solutions to a cross-diffusion system,, J. Math. Anal. Appl., 343 (2008), 826. doi: 10.1016/j.jmaa.2008.01.089. Google Scholar

[37]

A. Turing, The Chemical Basis of Morphogenesis,, Phil. Transact. Royal Soc. B, 237 (1952), 37. doi: 10.1098/rstb.1952.0012. Google Scholar

[38]

Y. Wu, Qualitative studies of solutions for some cross-diffusion systems,, China-Japan Symposium on Reaction-Diffusion Equations and their Applications and Computational Aspects (Shanghai, (1997), 177. Google Scholar

[39]

A. Yagi, Global solution to some quasilinear parabolic system in population dynamics,, Nonlinear Analysis, 21 (1993), 603. doi: 10.1016/0362-546X(93)90004-C. Google Scholar

[1]

Yong Jung Kim, Wei-Ming Ni, Masaharu Taniguchi. Non-existence of localized travelling waves with non-zero speed in single reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3707-3718. doi: 10.3934/dcds.2013.33.3707

[2]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[3]

Ciprian G. Gal, Mahamadi Warma. Reaction-diffusion equations with fractional diffusion on non-smooth domains with various boundary conditions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1279-1319. doi: 10.3934/dcds.2016.36.1279

[4]

Angelo Favini, Atsushi Yagi. Global existence for Laplace reaction-diffusion equations. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1-21. doi: 10.3934/dcdss.2020083

[5]

Bilgesu A. Bilgin, Varga K. Kalantarov. Non-existence of global solutions to nonlinear wave equations with positive initial energy. Communications on Pure & Applied Analysis, 2018, 17 (3) : 987-999. doi: 10.3934/cpaa.2018048

[6]

Keisuke Matsuya, Tetsuji Tokihiro. Existence and non-existence of global solutions for a discrete semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 209-220. doi: 10.3934/dcds.2011.31.209

[7]

Yuan Lou, Wei-Ming Ni, Yaping Wu. On the global existence of a cross-diffusion system. Discrete & Continuous Dynamical Systems - A, 1998, 4 (2) : 193-203. doi: 10.3934/dcds.1998.4.193

[8]

J. F. Toland. Non-existence of global energy minimisers in Stokes waves problems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (8) : 3211-3217. doi: 10.3934/dcds.2014.34.3211

[9]

Fuqin Sun, Mingxin Wang. Non-existence of global solutions for nonlinear strongly damped hyperbolic systems. Discrete & Continuous Dynamical Systems - A, 2005, 12 (5) : 949-958. doi: 10.3934/dcds.2005.12.949

[10]

Oleksiy V. Kapustyan, Pavlo O. Kasyanov, José Valero. Structure and regularity of the global attractor of a reaction-diffusion equation with non-smooth nonlinear term. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4155-4182. doi: 10.3934/dcds.2014.34.4155

[11]

Shouming Zhou, Chunlai Mu, Yongsheng Mi, Fuchen Zhang. Blow-up for a non-local diffusion equation with exponential reaction term and Neumann boundary condition. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2935-2946. doi: 10.3934/cpaa.2013.12.2935

[12]

Marek Fila, Hirokazu Ninomiya, Juan-Luis Vázquez. Dirichlet boundary conditions can prevent blow-up in reaction-diffusion equations and systems. Discrete & Continuous Dynamical Systems - A, 2006, 14 (1) : 63-74. doi: 10.3934/dcds.2006.14.63

[13]

Yueding Yuan, Zhiming Guo, Moxun Tang. A nonlocal diffusion population model with age structure and Dirichlet boundary condition. Communications on Pure & Applied Analysis, 2015, 14 (5) : 2095-2115. doi: 10.3934/cpaa.2015.14.2095

[14]

Shu-Yu Hsu. Non-existence and behaviour at infinity of solutions of some elliptic equations. Discrete & Continuous Dynamical Systems - A, 2004, 10 (3) : 769-786. doi: 10.3934/dcds.2004.10.769

[15]

Piotr Kowalski. The existence of a solution for Dirichlet boundary value problem for a Duffing type differential inclusion. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2569-2580. doi: 10.3934/dcdsb.2014.19.2569

[16]

Yi Li, Chunshan Zhao. Global existence of solutions to a cross-diffusion system in higher dimensional domains. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 185-192. doi: 10.3934/dcds.2005.12.185

[17]

Sebastian Aniţa, William Edward Fitzgibbon, Michel Langlais. Global existence and internal stabilization for a reaction-diffusion system posed on non coincident spatial domains. Discrete & Continuous Dynamical Systems - B, 2009, 11 (4) : 805-822. doi: 10.3934/dcdsb.2009.11.805

[18]

Alain Hertzog, Antoine Mondoloni. Existence of a weak solution for a quasilinear wave equation with boundary condition. Communications on Pure & Applied Analysis, 2002, 1 (2) : 191-219. doi: 10.3934/cpaa.2002.1.191

[19]

Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223

[20]

Laiqing Meng, Jia Yuan, Xiaoxin Zheng. Global existence of almost energy solution to the two-dimensional chemotaxis-Navier-Stokes equations with partial diffusion. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3413-3441. doi: 10.3934/dcds.2019141

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]