June  2013, 18(4): 1109-1154. doi: 10.3934/dcdsb.2013.18.1109

A continuous model of angiogenesis: Initiation, extension, and maturation of new blood vessels modulated by vascular endothelial growth factor, angiopoietins, platelet-derived growth factor-B, and pericytes

1. 

Department of Mathematics, Central Michigan University, Mount Pleasant, MI 48859, United States

2. 

National Research Laboratory for Vascular Biology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, South Korea

3. 

Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, United States

Received  October 2011 Revised  March 2012 Published  February 2013

This work presents a continuous model for three early stage events in angiogenesis: initiation, sprout extension, and vessel maturation. We carefully examine the regulating mechanisms of vascular endothelial growth factor (VEGF) and angiopoietins (Ang1 and Ang2) on the proliferation, migration and maturation of endothelial cells through their endothelium-specific receptor tyrosine kinase VEGFR2 and Tie2, respectively. We also consider the effect of platelet-derived growth factor-B (PDGF-B) on the proliferation and migration of pericytes. For growth factors, we present a mathematical model integrating molecular reactions on blood vessels with tissue-level diffusion. For capillary extension, we develop a visco-elastic model to couple tip cell protrusion, endothelium elasticity, and stalk cell proliferation. Our model reproduces corneal angiogenesis experiments and several anti-angiogenesis therapy results. This model also demonstrates that (1) the competition between Ang1 and Ang2 is the angiogenic switch; (2) the maturation process modulated by pericytes and angiopoietins is crucial to vessel normalization and can explain the resistance to anti-VEGF therapy; (3) combined anti-pericyte and anti-VEGF therapy enhances blood vessel regression over anti-VEGF therapy alone.
Citation: Xiaoming Zheng, Gou Young Koh, Trachette Jackson. A continuous model of angiogenesis: Initiation, extension, and maturation of new blood vessels modulated by vascular endothelial growth factor, angiopoietins, platelet-derived growth factor-B, and pericytes. Discrete & Continuous Dynamical Systems - B, 2013, 18 (4) : 1109-1154. doi: 10.3934/dcdsb.2013.18.1109
References:
[1]

A. R. A. Anderson and M. A. J. Chaplain, Continuous and discrete mathematical models of tumor-induced angiogenesis,, Bull. Math. Biol., 60 (1998), 857. Google Scholar

[2]

A. R. A. Anderson and M. A.J . Chaplain, A mathematical model for capillary network formation in the absence of endothelial cell proliferation,, Appl. Math. Lett., 11 (1998), 109. Google Scholar

[3]

L. Arakelyan, V. Vainstein and Z. Agur, A computer algorithm describing the process of vessel formation and maturation, and its use for predicting the effects of anti-angiogenic and anti-maturation therapy on vascular tumor growth,, Angiogenesis, 5 (2002), 203. Google Scholar

[4]

A. Armulik, A. Abramsson and C. Betsholtz, Endothelial/pericyte interactions,, Circ. Res., 97 (2005), 512. Google Scholar

[5]

G. Ateshian, On the theory of reactive mixtures for modeling biological growth,, Biomech. Model. Mechanobiol., 6 (2007), 423. Google Scholar

[6]

H. G. Augustin, G. Y. Koh, G. Thurston and K. Alitalo, Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system,, Nat. Rev. Mol. Cell Biol., 10 (2009), 165. Google Scholar

[7]

D. Balding and D. L. S. McElwain, A mathematical model of tumor-induced capillary growth,, J. Theor. Biol., 114 (1985), 53. Google Scholar

[8]

K. Bartha and H. Rieger, Vascular network remodeling via vessel cooption, regression and growth in tumors,, J. Theor. Biol., 21 (2006), 903. doi: 10.1016/j.jtbi.2006.01.022. Google Scholar

[9]

A. Bauer, T. Jackson and Y. Jiang, A cell-based model exhibiting branching and anastomosis during tumor-induced angiogenesis,, Biophys. J., 92 (2007), 3105. Google Scholar

[10]

A. Bauer, T. Jackson, Y. Jiang and T. Rohlf, Receptor cross-talk in angiogenesis: mapping environmental cues to cell phenotype using a stochastic, boolean signaling network model,, J. Theor. Biol., 264 (2010), 838. Google Scholar

[11]

A. R. Bausch, F. Ziemann, A. A. Boulbitch, K. Jacobson and E. Sackmann, Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead microrheometry,, Biophys. J., 75 (1998), 2038. Google Scholar

[12]

K. Bentley, H. Gerhardt and P. A. Bates, Agent-based simulation of notch-mediated tip cell selection in angiogenic sprout initialisation,, J. Theor. Biol., 250 (2008), 25. Google Scholar

[13]

K. Bentley, G. Mariggi, H. Gerhardt and P. A. Bates, Tipping the balance: Robustness of tip cell selection, migration and fusion in angiogenesis,, PLoS Comput. Biol., 5 (2009). Google Scholar

[14]

G. Bergers and D. Hanahan, Modes of resistance to anti-angiogenic therapy,, Nat. Rev. Cancer, 8 (2008), 592. Google Scholar

[15]

G. Bergers, S. Song, N. Meyer-Morse, et al, Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors,, J. Clin. Invest., 111 (2003), 1287. Google Scholar

[16]

F. Billy, B. Ribba, O. Saut, et al, A pharmacologically based multiscale mathematical model of angiogenesis and its use in investigating the efficacy of a new cancer treatment strategy,, J. Theor. Biol., 260 (2009), 545. Google Scholar

[17]

M. Bjarnegard, M. Enge, J. Norlin, et al, Endothelium-specific ablation of PDGF-B leads to pericyte loss and glomerular, cardiac and placental abnormalities,, Development, 131 (2004), 1847. Google Scholar

[18]

E. Bogdanovic, V. P. Nguyen and D. J. Dumont, Activation of Tie2 by angiopoietin-1 and angiopoietin-2 results in their release and receptor internalization,, J. Cell Sci., 119 (2006), 3551. Google Scholar

[19]

R. M. Bowen, "Introduction to Continuum Mechanics for Engineers,'', Springer, (2007). Google Scholar

[20]

H. M. Byrne and M. A. J. Chaplain, Mathematical models for tumour angiogenesis: Numerical simulations and nonlinear wave solutions,, Bull. Math. Biol., 57 (1995), 461. Google Scholar

[21]

H. M. Byrne and M. A. J. Chaplain, Explicit solutions of a simplified model of capillary sprout growth during tumor angiogenesis,, Appl. Math. Lett., 9 (1996), 69. Google Scholar

[22]

J. Cai, O. Kehoe, G. M. Smith, et al, The angiopoietin/Tie-2 system regulates pericyte survival and recruitment in diabetic retinopathy,, Invest. Ophthalmol. Vis. Sci., 49 (2008). Google Scholar

[23]

V. Capasso and D. Morale, Stochastic modelling of tumour-induced angiogenesis,, J. Math. Biol., 58 (2009), 219. doi: 10.1007/s00285-008-0193-z. Google Scholar

[24]

P. Carmeliet, Angiogenesis in life, disease and medicine,, Nature, 438 (2005), 932. Google Scholar

[25]

P. Carmeliet and R. K. Jain, Molecular mechanisms and clinical applications of angiogenesis,, Nature, 473 (2011), 298. Google Scholar

[26]

R. Carmeliet and R. K. Jain, Angiogenesis in cancer and other diseases,, Nature, 407 (2000), 249. Google Scholar

[27]

S. Cébe-Suarez, A. Zehnder-Fjällman and K. Ballmer-Hofer, The role of VEGF receptors in angiogenesis; complex partnerships,, Cell. Mol. Life Sci., 63 (2006), 601. Google Scholar

[28]

B. Cohen, D. Barkan, Y. Levy, et al, Leptin induces angiopoietin-2 expression in adipose tissues,, J. Biol. Chem., 276 (2001), 7697. Google Scholar

[29]

K. D. Costa, A. J. Sim and F. C.-P. Yin, Non-Hertzian approach to analyzing mechanical properties of endothelial cells probed by atomic force microscopy,, J. Biomech. Eng., 128 (2006), 176. Google Scholar

[30]

S. C. Cowin, Tissue growth and remodeling,, Annu. Rev. Biomed. Eng., 6 (2004), 77. Google Scholar

[31]

S. Davis, T. H. Aldrich, P. F. Jones, et al, Isolation of angiopoietin-1, a ligand for the Tie2 receptor, by secretion-trap expression cloning,, Cell, 87 (1996), 1161. Google Scholar

[32]

F. De Smet, I. Segura, K. De Bock, et al, Mechanisms of vessel branching,, Arterioscler. Thromb. Vasc. Biol., 29 (2009), 639. Google Scholar

[33]

N. Desprat, A. Richert, J. Simeon and A. Asnacios, Creep function of a single living cell,, Biophys. J., 88 (2005), 2224. Google Scholar

[34]

H. F. Dvorak, Vascular permeability factor/vascular endothelial growth factor: A critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy,, J. Clin. Oncol., 20 (2002), 4368. Google Scholar

[35]

L. M. Ellis and D. J. Hicklin, Vegf-targeted therapy: Mechanisms of anti-tumour activity,, Nat. Rev. Cancer, 8 (2008), 579. Google Scholar

[36]

R. Erber, A. Thurnher, A. D. Katsen, et al, Combined inhibition of vegf and pdgf signaling enforces tumor vessel regression by interfering with pericyte-mediated endothelial cell survival mechanisms,, FASEB J., 18 (2004), 338. Google Scholar

[37]

Y. Feng, F. Vom Hagen, F. Pfister, et al, Impaired pericyte recruitment and abnormal retinal angiogenesis as a result of angiopoietin-2 overexpression,, Thromb. Haemostasis, 97 (2007), 99. Google Scholar

[38]

P. Fernandez, L. Heymann, A. Ott, N. Aksel and P. A Pullarkat, Shear rheology of a cell monolayer,, New J. Phys., 9 (2007). Google Scholar

[39]

P. Fernandez and A. Ott, Single cell mechanics: Stress stiffening and kinematic hardening,, Phys. Rev. Lett., 100 (2008). Google Scholar

[40]

N. Ferrara, The role of VEGF in the regulation of physiological and pathological angiogenesis,, in, (2005), 209. Google Scholar

[41]

N. Ferrara, G. Hans-Peter and L. Jennifer, The biology of VEGF and its receptors,, Nat. Med., 9 (2003), 669. Google Scholar

[42]

U. Fiedler, T. Krissl, S. Koidl, et al, Angiopoietin-1 and angiopoietin-2 share the same binding domains in the Tie-2 receptor involving the first Ig-like loop and the epidermal growth factor-like repeats,, J.Biol. Chem., 278 (2003), 1721. Google Scholar

[43]

U. Fiedler, M. Scharpfenecker, S. Koidl, et al, The Tie-2 ligand Angiopoietin-2 is stored in and rapidly released upon stimulation from endothelial cell Weibel-Palade bodies,, Blood, 103 (2004), 4150. Google Scholar

[44]

J. Folkman, Tumor angiogenesis: Therapeutic implications,, New Engl. J. Med., 285 (1971), 1182. Google Scholar

[45]

J. Folkman and R. Kalluri, Tumor angiogenesis,, in, (2003). Google Scholar

[46]

K. Forsten-Williams, C. C. Chua and M. A. Nugent, The kinetics of fgf-2 binding to heparan sulfate proteoglycans and map kinase signaling,, J. Theor. Biol., 233 (2005), 483. Google Scholar

[47]

J. A. Fozard, H. M. Byrne, O. E. Jensen and J. R. King, Continuum approximations of individual-based models for epithelial monolayers,, Mathematical Medicine and Biology, 27 (2010), 39. doi: 10.1093/imammb/dqp015. Google Scholar

[48]

M. Franco, P. Roswall, E. Cortez, D. Hanahan and K. Pietras, Pericytes promote endothelial cell survival through induction of autocrine vegf-a signaling and bcl-w expression,, Blood, 118 (2011), 2906. Google Scholar

[49]

S. Fukuhara, K. Sako, K. Noda, et al, Tie2 is tied at the cell-cell contacts and to extracellular matrix by angiopoietin-1,, Exp. Mol. Med., 41 (2009). Google Scholar

[50]

S. Fukuhara, K. Sako, K Noda, et al, Angiopoietin-1/Tie2 receptor signaling in vascular quiescence and angiogenesis,, Histol. Histopathol., 25 (2010), 387. Google Scholar

[51]

K. Gaengel, G. Genove, A. Armulik and C. Betsholtz, Endothelial-mural cell signaling in vascular development and angiogenesis,, Arterioscler. Thromb. Vasc. Biol., 29 (2009), 630. Google Scholar

[52]

A. Gamba, D. Ambrosi, A. Coniglio, et al, Percolation, morphogenesis, and burgers dynamics in blood vessels formation,, Phys. Rev. Lett., 90 (2003). Google Scholar

[53]

J. R. Gamble, J. Drew, L. Trezise, et al, Angiopoietin-1 is an antipermeability and anti-inflammatory agent in vitro and targets cell junctions,, Circ. Res., 87 (2000), 603. Google Scholar

[54]

K. Garikipati, The kinematics of biological growth,, Appl. Mech. Rev., 62 (2009). Google Scholar

[55]

H. Gerber, A. McMurtrey, J. Kowalski, et al, Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3'-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation,, J. Biol. Chem., 273 (1998), 30336. Google Scholar

[56]

H. Gerhardt, M. Golding, M. Fruttiger, et al, VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia,, J. Cell Biol., 161 (2003), 1163. Google Scholar

[57]

J. L. Gevertz and S. Torquato, Modeling the effects of vasculature evolution on early brain tumor growth,, J. Theor. Biol., 243 (2006), 517. doi: 10.1016/j.jtbi.2006.07.002. Google Scholar

[58]

V. Goede, T. Schmidt, S. Kimmina, D. Kozian and HG Augustin, Analysis of blood vessel maturation processes during cyclic ovarian angiogenesis,, Lab. Invest., 78 (1998). Google Scholar

[59]

H. P. Hammes, J. Lin, P. Wagner, et al, Angiopoietin-2 causes pericyte dropout in the normal retina: Evidence for involvement in diabetic retinopathy,, Diabetes, 53 (2004), 1104. Google Scholar

[60]

D. Hanahan and J. Folkman, Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis,, Cell, 86 (1996), 353. Google Scholar

[61]

R. Harfouche and S. N. A. Hussain, Signaling and regulation of endothelial cell survival by angiopoietin-2,, Am. J. Physiol. Heart Circ. Physiol., 291 (2006), 1635. Google Scholar

[62]

A. Hegen, S. Koidl, K. Weindel, et al, Expression of angiopoietin-2 in endothelial cells is controlled by positive and negative regulatory promoter elements,, Arterioscler. Thromb. Vasc. Biol., 24 (2004), 1803. Google Scholar

[63]

M. Hellström, M. Kalén, P. Lindahl, A. Abramsson and C. Betsholtz, Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse,, Development, 126 (1999), 3047. Google Scholar

[64]

K. K. Hirschi, S. A. Rohovsky, L. H. Beck, S. R. Smith and P. A. D'Amore, Endothelial cells modulate the proliferation of mural cell precursors via platelet-derived growth factor-BB and heterotypic cell contact,, Circ. Res., 84 (1999), 298. Google Scholar

[65]

J. Holash, P. C. Maisonpierre, D. Compton, et al, Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF,, Science, 284 (1999), 1994. Google Scholar

[66]

M. J. Holmes and B. D. Sleeman, A mathematical model of tumour angiogenesis incorporating cellular traction and viscoelastic effects,, J. Theor. Biol., 202 (2000), 95. Google Scholar

[67]

J. Huang, J. O. Bae, J. P. Tsai, et al, Angiopoietin-1/Tie-2 activation contributes to vascular survival and tumor growth during VEGF blockade,, Int J Oncol, 34 (2009), 79. Google Scholar

[68]

T. L. Jackson and X. Zheng, A cell-based model of endothelial cell elongation, proliferation and maturation during corneal angiogenesis,, Bull. Math. Biol., 72 (2010), 830. doi: 10.1007/s11538-009-9471-1. Google Scholar

[69]

R. K. Jain, Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy,, Science, 307 (2005), 58. Google Scholar

[70]

C. Jang, Y. J. Koh, N. K. Lim, et al, Angiopoietin-2 exocytosis is stimulated by sphingosine-1-phosphate in human blood and lymphatic endothelial cells,, Arterioscler. Thromb. Vasc. Biol., 29 (2009), 401. Google Scholar

[71]

N. Jo, C. Mailhos, M. Ju, et al, Inhibition of platelet-derived growth factor B signaling enhances the efficacy of anti-vascular endothelial growth factor therapy in multiple models of ocular neovascularization,, Am. J. Pathol., 168 (2006), 2036. Google Scholar

[72]

E. Karl, K. Warner, B. Zeitlin, et al, Bcl-2 acts in a proangiogenic signaling pathway through nuclear factor-$\kappa$B and CXC chemokines,, Cancer Res., 65 (2005), 5063. Google Scholar

[73]

I. Kim, H. G. Kim, J. So, et al, Angiopoietin-1 regulates endothelial cell survival through the phosphatidylinositol 3'-Kinase/Akt signal transduction pathway,, Circ. Res., 86 (2000), 24. Google Scholar

[74]

I. Kim, J. H. Kim, Y. S. Ryu, M. Liu and G. Y. Koh, Tumor necrosis factor-$\alpha$ upregulates angiopoietin-2 in human umbilical vein endothelial cells,, Biochem. Biophys. Res. Commun., 269 (2000), 361. Google Scholar

[75]

K. Kim et al, Oligomerization and multimerization are critical for angiopoietin-1 to bind and phosphorylate tie2,, J. Biol. Chem., 280 (2005), 20126. Google Scholar

[76]

S. Koch, S. Tugues, X. Li, L. Gualandi and L. Claesson-Welsh, Signal transduction by vascular endothelial growth factor receptors,, Biochem. J., 437 (2011), 169. Google Scholar

[77]

Y. J. Koh, H.-Z. Kim, S.-I. Hwang, et al, Double antiangiogenic protein, DAAP, targeting VEGF-A and angiopoietins in tumor angiogenesis, metastasis, and vascular leakage,, Cancer Cell, 18 (2010), 171. Google Scholar

[78]

R. Kowalczyk, Preventing blow-up in a chemotaxis model,, J. Math. Anal. Appl., 305 (2005), 566. doi: 10.1016/j.jmaa.2004.12.009. Google Scholar

[79]

K. Larripa and A. Mogilner, Transport of a 1D viscoelastic actin-myosin strip of gel as a model of a crawling cell,, Physica A, 372 (2006), 113. Google Scholar

[80]

H. A. Levine and M. Nilsen-Hamilton, Angiogenesis - A biochemial/mathematical perspective,, in, (2006). doi: 10.1007/11561606_2. Google Scholar

[81]

H. A. Levine, S. Pamuk, B. D. Sleeman and M. Nilsen-Hamilton, Mathematical modeling of capillary formation and development in tumor angiogenesis: Penetration into the stroma,, Bull. Math. Biol., 63 (2001), 801. Google Scholar

[82]

H. A. Levine, B. D. Sleeman and M. Nilsen-Hamilton, A mathematical model for the roles of pericytes and macrophages in the initiation of angiogenesis. I. the role of protease inhibitors in preventing angiogenesis,, Math. Biosci., 168 (2000), 77. doi: 10.1016/S0025-5564(00)00034-1. Google Scholar

[83]

F. Li and X. Zheng, Singularity analysis of a reaction-diffusion equation with a solution-dependent dirac delta source,, Appl. Math. Lett., 25 (2012), 2179. Google Scholar

[84]

G. Liu, A. Qutub, P. Vempati, F. Mac Gabhann and A. Popel, Module-based multiscale simulation of angiogenesis in skeletal muscle,, Theor. Biol. Med. Model., 8 (2011). Google Scholar

[85]

I. B. Lobov, P. C. Brooks and R. A. Lang, Angiopoietin-2 displays VEGF-dependent modulation of capillary structure and endothelial cell survival in vivo,, PNAS, 99 (2002), 11205. Google Scholar

[86]

N. R. London, K. J. Whitehead and D. Y. Li, Endogenous endothelial cell signaling systems maintain vascular stability,, Angiogenesis, 12 (2009), 149. Google Scholar

[87]

B. Loret and F. M. F. Simes, A framework for deformation, generalized diffusion, mass transfer and growth in multi-species multi-phase biological tissues,, Eur. J. Mech. A-Solid, 24 (2005), 757. doi: 10.1016/j.euromechsol.2005.05.005. Google Scholar

[88]

C. Lu, A. A. Kamat, Y. G. Lin, et al, Dual targeting of endothelial cells and pericytes in antivascular therapy for ovarian carcinoma,, Clin. Cancer Res., 13 (2007), 4209. Google Scholar

[89]

C. Lu, P. H. Thaker, Y. G. Lin, et al, Impact of vessel maturation on anti-angiogenic therapy in ovarian cancer,, Am. J. Obstet. Gynecol., 198 (2008). Google Scholar

[90]

R. Mabry, D. G Gilbertson, A. Frank, et al, A dual-targeting pdgfrbeta/vegf-a molecule assembled from stable antibody fragments demonstrates anti-angiogenic activity in vitro and in vivo,, mAbs, 2 (2010), 20. Google Scholar

[91]

F. Mac Gabhann and A. S. Popel, Model of competitive binding of vascular endothelial growth factor and placental growth factor to VEGF receptors on endothelial cells,, Am. J. Physiol. Heart Circ. Physiol., 286 (2004), 153. Google Scholar

[92]

F. Mac Gabhann and A. S. Popel, Targeting neuropilin-1 to inhibit vegf signaling in cancer: Comparison of therapeutic approaches,, PLoS Comput. Biol., 2 (2006). Google Scholar

[93]

F. Mac Gabhann and A. S. Popel, Dimerization of VEGF receptors and implications for signal transduction: A computational study,, Biophys. Chem., 128 (2007), 125. Google Scholar

[94]

P. C. Maisonpierre, C. Suri, P. F. Jones, et al, Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis,, Science, 277 (1997), 55. Google Scholar

[95]

S. J. Mandriota and M. S. Pepper, Regulation of angiopoietin-2 mRNA levels in bovine microvascular endothelial cells by cytokines and hypoxia,, Circ. Res., 83 (1998), 852. Google Scholar

[96]

D. Manoussaki, A mechanochemical model of angiogenesis and vasculogenesis,, ESAIM: Mathematical Modelling and Numerical Analysis, 37 (2003), 581. doi: 10.1051/m2an:2003046. Google Scholar

[97]

N. Mantzaris, S. Webb and H. G. Othmer, Mathematical modeling of tumor-induced angiogenesis,, J. Math Biol., 49 (2004), 111. doi: 10.1007/s00285-003-0262-2. Google Scholar

[98]

K. Matsushita, M. Yamakuchi, C. N. Morrell, et al, Vascular endothelial growth factor regulation of Weibel-Palade-body exocytosis,, Blood, 105 (2005). Google Scholar

[99]

S. R. McDougall, A. R. A. Anderson and M. A. J. Chaplain, Mathematical modelling of dynamic adaptive tumour-induced angiogenesis: Clinical implications and therapeutic targeting strategies,, J. Theor. Biol., 241 (2006), 564. doi: 10.1016/j.jtbi.2005.12.022. Google Scholar

[100]

S. R. McDougall, M. A. J. Chaplain, A. Stéphanou and A. R. A. Anderson, Modelling the impact of pericyte migration and coverage of vessels on the efficacy of vascular disrupting agents,, Math. Model. Nat. Phenom., 5 (2010), 163. doi: 10.1051/mmnp/20105108. Google Scholar

[101]

Q. Mi, D. Swigon, et al, One-dimensional elastic continuum model of enterocyte layer migration,, Biophys. J., 93 (2007), 3745. Google Scholar

[102]

F. Milde, M. Bergdorf and P. Koumoutsakos, A hybrid model for three-dimensional simulations of sprouting angiogenesis,, Biophys. J., 95 (2008), 3146. Google Scholar

[103]

R. Muñoz Chápuli, A. R. Quesada and M. Ángel Medina, Angiogenesis and signal transduction in endothelial cells,, Cell. Mol. Life Sci., 61 (2004), 2224. Google Scholar

[104]

G. N. Naumov, E. Bender, Zurakowski, et al, A model of human tumor dormancy: An angiogenic switch from the nonangiogenic phenotype,, J. Natl. Cancer Inst., 98 (2006), 316. Google Scholar

[105]

J. Nor and P. Polverini, Role of endothelial cell survival and death signals in angiogenesis,, Angiogenesis, 3 (1999), 101. Google Scholar

[106]

H. Oh, H. Takagi, K. Suzuma, et al, Hypoxia and vascular endothelial growth factor selectively up-regulate angiopoietin-2 in bovine microvascular endothelial cells,, J. Biol. Chem., 274 (1999), 15732. Google Scholar

[107]

J. Oliner et al, Suppression of angiogenesis and tumor growth by selective inhibition of angiopoietin-2,, Cancer Cell, 6 (2004), 507. Google Scholar

[108]

M. R. Owen, T. Alarcon, P. K. Maini and H. M. Byrne, Angiogenesis and vascular remodelling in normal and cancerous tissues,, J. Theor. Biol., 58 (2009), 689. doi: 10.1007/s00285-008-0213-z. Google Scholar

[109]

S. M. Parikh, T. Mammoto, A. Schultz, et al, Excess circulating angiopoietin-2 may contribute to pulmonary vascular leak in sepsis in humans,, PLoS Med., 3 (2006). Google Scholar

[110]

S. M. Peirce, Computational and mathematical modeling of angiogenesis,, Microcirculation, 15 (2008), 739. Google Scholar

[111]

S. M. Peirce, E. J. Van Gieson and T. C. Skalak, Multicellular simulation predicts microvascular patterning and in silico tissue assembly,, FASEB J., 18 (2004), 731. Google Scholar

[112]

K. Pietras and D. Hanahan, A multitargeted, metronomic, and maximum-tolerated dose chemo-switch regimen is antiangiogenic, producing objective responses and survival benefit in a mouse model of cancer,, J. Clin. Oncol., 23 (2005), 939. Google Scholar

[113]

M. J. Plank and B. D. Sleeman, A reinforced random walk model of tumor angiogenesis and anti-angiogenesis strategies,, IMA J. Math. Med. Biol., 20 (2003), 135. Google Scholar

[114]

M. J. Plank and B. D. Sleeman, Lattice and non-lattice models of tumour angiogenesis,, Bull. Math. Biol., 66 (2004), 1785. doi: 10.1016/j.bulm.2004.04.001. Google Scholar

[115]

M. J. Plank, B. D. Sleeman and P. F. Jones, A mathematical model of tumour angiogenesis, regulated by vascular endothelial growth factor and the angiopoietins,, J. Theor. Biol., 229 (2004), 435. doi: 10.1016/j.jtbi.2004.04.012. Google Scholar

[116]

M. Prass, K. Jacobson, A. Mogilner and M. Radmacher, Direct measurement of the lamellipodial protrusive force in a migrating cell,, J. Cell Biol., 174 (2006), 767. Google Scholar

[117]

A. A. Qutub, F. Mac Gabhann, E. D. Karagiannis, P. Vempati and A. S. Popel, Multiscale models of angiogenesis,, IEEE Eng. Med. Biol. Mag., 28 (2009), 14. Google Scholar

[118]

A. A. Qutub and A. Popel, Elongation, proliferation $&$ migration differentiate endothelial cell phenotypes and determine capillary sprouting,, BMC Syst. Biol., 3 (2009). Google Scholar

[119]

A. Ramasubramanian and L. Taber, Computational modeling of morphogenesis regulated by mechanical feedback,, Biomech. Model. Mechanobiol., 7 (2008), 77. Google Scholar

[120]

A. Raza, M. J. Franklin and A. Z. Dudek, Pericytes and vessel maturation during tumor angiogenesis and metastasis,, Am. J. Hematol., 85 (2010), 593. Google Scholar

[121]

Y. Reiss, J. Droste, M. Heil, et al, Angiopoietin-2 impairs revascularization after limb ischemia,, Circ. Res., 101 (2007), 88. Google Scholar

[122]

E. K. Rodriguez, A. Hoger and A. D. McCulloch, Stress-dependent finite growth in soft elastic tissues,, J. Biomech., 27 (1994), 455. Google Scholar

[123]

P. Saharinen, L. Eklund, J. Miettinen, et al, Angiopoietins assemble distinct Tie2 signalling complexes in endothelial cell-cell and cell-matrix contacts,, Nat. Cell Biol., 10 (2008), 527. Google Scholar

[124]

R.C. Schugart, A. Friedman, R. Zhao and C. K. Sen, Wound angiogenesis as a function of tissue oxygen tension: A mathematical model,, PNAS, 105 (2008), 2628. Google Scholar

[125]

C. E. Semino, R. D. Kamm and D. A. Lauffenburger, Autocrine EGF receptor activation mediates endothelial cell migration and vascular morphogenesis induced by VEGF under interstitial flow,, Exp. Cell Res., 312 (2006), 289. Google Scholar

[126]

G. Serini, D. Ambrosi, E. Giraudo, et al, Modeling the early stages of vascular network assembly,, EMBO J., 22 (2003), 1771. Google Scholar

[127]

C. Sfiligoi, A. de Luca, I. Cascone, et al, Angiopoietin-2 expression in breast cancer correlates with lymph node invasion and short survival,, Int. J. Cancer, 103 (2003), 466. Google Scholar

[128]

J. Shen et al, An antibody directed against pdgf receptor enhances the antitumor and the anti-angiogenic activities of an anti-vegf receptor 2 antibody,, Biochem. Biophys. Res. Commun., 357 (2007), 1142. Google Scholar

[129]

J. A. Sherratt and J. D. Murrat, Models of epidermal wound healing,, Proc. R. Soc. Lond. B., 241 (1990), 29. Google Scholar

[130]

M. M. Sholley, G. P. Ferguson, H. R. Seibel, et al, Mechanisms of neovascularization. Vascular sprouting can occur without proliferation of endothelial cells,, Lab. Invest., 51 (1984), 624. Google Scholar

[131]

B. D. Sleeman and I. P. Wallis, Tumour induced angiogenesis as a reinforced random walk: modeling capillary network formation without endothelial cell proliferation,, Math. Comput. Model., 36 (2002), 339. doi: 10.1016/S0895-7177(02)00129-2. Google Scholar

[132]

A. Stephanou, S. R. McDougall, A. R. A. Anderson and M. A. J. Chaplain, Mathematical modelling of the influence of blood rheological properties upon adaptative tumour-induced angiogenesis,, J. Theor. Biol., 44 (2006), 96. doi: 10.1016/j.mcm.2004.07.021. Google Scholar

[133]

C. L. Stokes and D. A. Lauffenburger, Analysis of the roles of microvessel endothelial cell random mobility and chemotaxis in angiogenesis,, J. Ther. Biol., 152 (1991), 377. Google Scholar

[134]

S. Sun, M. F. Wheeler, M. Obeyesekere and C. Patrick, A deterministic model of growth factor-induced angiogenesis,, Bull. Math. Biol., 67 (2005), 313. doi: 10.1016/j.bulm.2004.07.004. Google Scholar

[135]

C. Sundberg, M. Kowanetz, L.F. Brown, M. Detmar and H. F. Dvorak, Stable expression of angiopoietin-1 and other markers by cultured pericytes: Phenotypic similarities to a subpopulation of cells in maturing vessels during later stages of angiogenesis in vivo,, Lab. Invest., 82 (2002), 387. Google Scholar

[136]

C. Suri, P. F. Jones, S. Patan, et al, Requisite role of angiopoietin-1, a ligand for the Tie2 receptor, during embryonic angiogenesis,, Cell, 87 (1996), 1171. Google Scholar

[137]

A. Szabo, E. D. Perryn and A. Czirok, Network formation of tissue cells via preferential attraction to elongated structures,, Phys. Rev. Lett., 98 (2007). Google Scholar

[138]

D. Szczerba, H. Kurz and G. Szekely, A computational model of intussusceptive microvascular growth and remodeling,, J. Theor. Biol., 261 (2009), 570. Google Scholar

[139]

C. R. Tait and P. F. Jones, Angiopoietins in tumours: the angiogenic switch,, J. Pathol., 204 (2004), 1. Google Scholar

[140]

K. Teichert-Kuliszewska, P. C. Maisonpierre, N. Jones, et al, Biological action of angiopoietin-2 in a fibrin matrix model of angiogenesis is associated with activation of Tie2,, Cardiovasc. Res., 49 (2001), 659. Google Scholar

[141]

L. J. Thompson, F. Wang, A. D. Proia, et al, Proteome analysis of the rat cornea during angiogenesis,, Proteomics, 3 (2003), 2258. Google Scholar

[142]

O. Thoumine and A. Ott, Time scale dependent viscoelastic and contractile regimes in fibroblasts probed by microplate manipulation,, J. Cell Sci., 110 (1997), 2109. Google Scholar

[143]

G. Thurston, J. S. Rudge, E. Ioffe, et al, Angiopoietin-1 protects the adult vasculature against plasma leakage,, Nat. Med., 6 (2000), 460. Google Scholar

[144]

G. Thurston, C. Suri, K. Smith, et al, Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin 2,, Science, 286 (1999), 2511. Google Scholar

[145]

S. Tong and F. Yuan, Numerical simulations of angiogenesis in the cornea,, Microvasc. Res., 61 (2001), 14. Google Scholar

[146]

R. D. M. Travasso, E. Corvera Poir, M. Castro, et al, Tumor angiogenesis and vascular patterning: A mathematical model,, PLoS ONE, 6 (2011). Google Scholar

[147]

R. Tyson, L. G. Stern and R. J. LeVeque, Fractional step methods applied to a chemotaxis model,, J. Math. Biol., 41 (2000), 455. doi: 10.1007/s002850000038. Google Scholar

[148]

K. Y. Volokh, Stresses in growing soft tissues,, Acta Biomater., 2 (2006), 493. Google Scholar

[149]

S. Wakui, K. Yokoo, T. Muto, et al, Localization of Ang-1, -2, Tie-2, and VEGF expression at endothelial-pericyte interdigitation in rat angiogenesis,, Lab. Invest., 86 (2006), 1172. Google Scholar

[150]

R. Wcislo, W. Dzwinel, D. Yuen and A. Dudek, A 3-D model of tumor progression based on complex automata driven by particle dynamics,, J. Mol. Model., 15 (2009), 1517. Google Scholar

[151]

M. Welter, K. Bartha and H. Rieger, Vascular remodelling of an arterio-venous blood vessel network during solid tumour growth,, J. Theor. Biol., 259 (2009), 405. Google Scholar

[152]

R. R. White, S. Shan, C. P. Rusconi, et al, Inhibition of rat corneal angiogenesis by a nuclease-resistant RNA aptamer specific for angiopoietin-2,, PNAS, 100 (2003), 5028. Google Scholar

[153]

J. L. Wilkinson-Berka, S. Babic, T. de Gooyer, et al, Inhibition of platelet-derived growth factor promotes pericyte loss and angiogenesis in ischemic retinopathy,, Am. J. Pathol., 164 (2004), 1263. Google Scholar

[154]

J. Wu, Q. Long, Xu S. and A. R. Padhani, Study of tumor blood perfusion and its variation due to vascular normalization by anti-angiogenic therapy based on 3d angiogenic microvasculature,, J. Biomech., 42 (2009), 712. Google Scholar

[155]

C. Xue, A. Friedman and C. K. Sen, A mathematical model of ischemic cutaneous wounds,, PNAS, 106 (2009), 16782. Google Scholar

[156]

S. Yang and T. Saif, Reversible and repeatable linear local cell force response under large stretches,, Exp. Cell Res., 305 (2005), 42. Google Scholar

[157]

H. T. Yuan, E. V. Khankin, S. A. Karumanchi and S. M. Parikh, Angiopoietin 2 is a partial agonist/antagonist of Tie2 signaling in the endothelium,, Mol. Cell. Biol., 29 (2009), 2011. Google Scholar

[158]

H. T. Yuan, P. G. Tipping, X. Z. Li, D. A. Long and A. S. Woolf, Angiopoietin correlates with glomerular capillary loss in anti-glomerular basement membrane glomerulonephritis,, Kidney Int., 61 (2002), 2078. Google Scholar

[159]

L. Zhang, N. Yang, J. Park, et al, Tumor-derived vascular endothelial growth factor up-regulates angiopoietin-2 in host endothelium and destabilizes host vasculature, supporting angiogenesis in ovarian cancer,, Cancer Res., 63 (2003), 3403. Google Scholar

[160]

X. Zheng, Y. Kim, L. Rakesh and E.-B. Lin, A conservative multiresolution finite volume method for reaction and diffusion in angiogenesis,, Submitted., (). Google Scholar

[161]

X. Zheng, S. Wise and V. Cristini, Nonlinear simulation of tumor necrosis, neovascularization and tissue invasion via an adaptive finite-element/level-set method,, Bull. Math. Biol., 67 (2005), 211. doi: 10.1016/j.bulm.2004.08.001. Google Scholar

[162]

X. Zheng and C. Xie, A viscoelastic model of blood capillary extension and regression: Derivation, analysis, and simulation,, J. Math. Biol., (2012). doi: 10.1007/s00285-012-0624-8. Google Scholar

show all references

References:
[1]

A. R. A. Anderson and M. A. J. Chaplain, Continuous and discrete mathematical models of tumor-induced angiogenesis,, Bull. Math. Biol., 60 (1998), 857. Google Scholar

[2]

A. R. A. Anderson and M. A.J . Chaplain, A mathematical model for capillary network formation in the absence of endothelial cell proliferation,, Appl. Math. Lett., 11 (1998), 109. Google Scholar

[3]

L. Arakelyan, V. Vainstein and Z. Agur, A computer algorithm describing the process of vessel formation and maturation, and its use for predicting the effects of anti-angiogenic and anti-maturation therapy on vascular tumor growth,, Angiogenesis, 5 (2002), 203. Google Scholar

[4]

A. Armulik, A. Abramsson and C. Betsholtz, Endothelial/pericyte interactions,, Circ. Res., 97 (2005), 512. Google Scholar

[5]

G. Ateshian, On the theory of reactive mixtures for modeling biological growth,, Biomech. Model. Mechanobiol., 6 (2007), 423. Google Scholar

[6]

H. G. Augustin, G. Y. Koh, G. Thurston and K. Alitalo, Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system,, Nat. Rev. Mol. Cell Biol., 10 (2009), 165. Google Scholar

[7]

D. Balding and D. L. S. McElwain, A mathematical model of tumor-induced capillary growth,, J. Theor. Biol., 114 (1985), 53. Google Scholar

[8]

K. Bartha and H. Rieger, Vascular network remodeling via vessel cooption, regression and growth in tumors,, J. Theor. Biol., 21 (2006), 903. doi: 10.1016/j.jtbi.2006.01.022. Google Scholar

[9]

A. Bauer, T. Jackson and Y. Jiang, A cell-based model exhibiting branching and anastomosis during tumor-induced angiogenesis,, Biophys. J., 92 (2007), 3105. Google Scholar

[10]

A. Bauer, T. Jackson, Y. Jiang and T. Rohlf, Receptor cross-talk in angiogenesis: mapping environmental cues to cell phenotype using a stochastic, boolean signaling network model,, J. Theor. Biol., 264 (2010), 838. Google Scholar

[11]

A. R. Bausch, F. Ziemann, A. A. Boulbitch, K. Jacobson and E. Sackmann, Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead microrheometry,, Biophys. J., 75 (1998), 2038. Google Scholar

[12]

K. Bentley, H. Gerhardt and P. A. Bates, Agent-based simulation of notch-mediated tip cell selection in angiogenic sprout initialisation,, J. Theor. Biol., 250 (2008), 25. Google Scholar

[13]

K. Bentley, G. Mariggi, H. Gerhardt and P. A. Bates, Tipping the balance: Robustness of tip cell selection, migration and fusion in angiogenesis,, PLoS Comput. Biol., 5 (2009). Google Scholar

[14]

G. Bergers and D. Hanahan, Modes of resistance to anti-angiogenic therapy,, Nat. Rev. Cancer, 8 (2008), 592. Google Scholar

[15]

G. Bergers, S. Song, N. Meyer-Morse, et al, Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors,, J. Clin. Invest., 111 (2003), 1287. Google Scholar

[16]

F. Billy, B. Ribba, O. Saut, et al, A pharmacologically based multiscale mathematical model of angiogenesis and its use in investigating the efficacy of a new cancer treatment strategy,, J. Theor. Biol., 260 (2009), 545. Google Scholar

[17]

M. Bjarnegard, M. Enge, J. Norlin, et al, Endothelium-specific ablation of PDGF-B leads to pericyte loss and glomerular, cardiac and placental abnormalities,, Development, 131 (2004), 1847. Google Scholar

[18]

E. Bogdanovic, V. P. Nguyen and D. J. Dumont, Activation of Tie2 by angiopoietin-1 and angiopoietin-2 results in their release and receptor internalization,, J. Cell Sci., 119 (2006), 3551. Google Scholar

[19]

R. M. Bowen, "Introduction to Continuum Mechanics for Engineers,'', Springer, (2007). Google Scholar

[20]

H. M. Byrne and M. A. J. Chaplain, Mathematical models for tumour angiogenesis: Numerical simulations and nonlinear wave solutions,, Bull. Math. Biol., 57 (1995), 461. Google Scholar

[21]

H. M. Byrne and M. A. J. Chaplain, Explicit solutions of a simplified model of capillary sprout growth during tumor angiogenesis,, Appl. Math. Lett., 9 (1996), 69. Google Scholar

[22]

J. Cai, O. Kehoe, G. M. Smith, et al, The angiopoietin/Tie-2 system regulates pericyte survival and recruitment in diabetic retinopathy,, Invest. Ophthalmol. Vis. Sci., 49 (2008). Google Scholar

[23]

V. Capasso and D. Morale, Stochastic modelling of tumour-induced angiogenesis,, J. Math. Biol., 58 (2009), 219. doi: 10.1007/s00285-008-0193-z. Google Scholar

[24]

P. Carmeliet, Angiogenesis in life, disease and medicine,, Nature, 438 (2005), 932. Google Scholar

[25]

P. Carmeliet and R. K. Jain, Molecular mechanisms and clinical applications of angiogenesis,, Nature, 473 (2011), 298. Google Scholar

[26]

R. Carmeliet and R. K. Jain, Angiogenesis in cancer and other diseases,, Nature, 407 (2000), 249. Google Scholar

[27]

S. Cébe-Suarez, A. Zehnder-Fjällman and K. Ballmer-Hofer, The role of VEGF receptors in angiogenesis; complex partnerships,, Cell. Mol. Life Sci., 63 (2006), 601. Google Scholar

[28]

B. Cohen, D. Barkan, Y. Levy, et al, Leptin induces angiopoietin-2 expression in adipose tissues,, J. Biol. Chem., 276 (2001), 7697. Google Scholar

[29]

K. D. Costa, A. J. Sim and F. C.-P. Yin, Non-Hertzian approach to analyzing mechanical properties of endothelial cells probed by atomic force microscopy,, J. Biomech. Eng., 128 (2006), 176. Google Scholar

[30]

S. C. Cowin, Tissue growth and remodeling,, Annu. Rev. Biomed. Eng., 6 (2004), 77. Google Scholar

[31]

S. Davis, T. H. Aldrich, P. F. Jones, et al, Isolation of angiopoietin-1, a ligand for the Tie2 receptor, by secretion-trap expression cloning,, Cell, 87 (1996), 1161. Google Scholar

[32]

F. De Smet, I. Segura, K. De Bock, et al, Mechanisms of vessel branching,, Arterioscler. Thromb. Vasc. Biol., 29 (2009), 639. Google Scholar

[33]

N. Desprat, A. Richert, J. Simeon and A. Asnacios, Creep function of a single living cell,, Biophys. J., 88 (2005), 2224. Google Scholar

[34]

H. F. Dvorak, Vascular permeability factor/vascular endothelial growth factor: A critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy,, J. Clin. Oncol., 20 (2002), 4368. Google Scholar

[35]

L. M. Ellis and D. J. Hicklin, Vegf-targeted therapy: Mechanisms of anti-tumour activity,, Nat. Rev. Cancer, 8 (2008), 579. Google Scholar

[36]

R. Erber, A. Thurnher, A. D. Katsen, et al, Combined inhibition of vegf and pdgf signaling enforces tumor vessel regression by interfering with pericyte-mediated endothelial cell survival mechanisms,, FASEB J., 18 (2004), 338. Google Scholar

[37]

Y. Feng, F. Vom Hagen, F. Pfister, et al, Impaired pericyte recruitment and abnormal retinal angiogenesis as a result of angiopoietin-2 overexpression,, Thromb. Haemostasis, 97 (2007), 99. Google Scholar

[38]

P. Fernandez, L. Heymann, A. Ott, N. Aksel and P. A Pullarkat, Shear rheology of a cell monolayer,, New J. Phys., 9 (2007). Google Scholar

[39]

P. Fernandez and A. Ott, Single cell mechanics: Stress stiffening and kinematic hardening,, Phys. Rev. Lett., 100 (2008). Google Scholar

[40]

N. Ferrara, The role of VEGF in the regulation of physiological and pathological angiogenesis,, in, (2005), 209. Google Scholar

[41]

N. Ferrara, G. Hans-Peter and L. Jennifer, The biology of VEGF and its receptors,, Nat. Med., 9 (2003), 669. Google Scholar

[42]

U. Fiedler, T. Krissl, S. Koidl, et al, Angiopoietin-1 and angiopoietin-2 share the same binding domains in the Tie-2 receptor involving the first Ig-like loop and the epidermal growth factor-like repeats,, J.Biol. Chem., 278 (2003), 1721. Google Scholar

[43]

U. Fiedler, M. Scharpfenecker, S. Koidl, et al, The Tie-2 ligand Angiopoietin-2 is stored in and rapidly released upon stimulation from endothelial cell Weibel-Palade bodies,, Blood, 103 (2004), 4150. Google Scholar

[44]

J. Folkman, Tumor angiogenesis: Therapeutic implications,, New Engl. J. Med., 285 (1971), 1182. Google Scholar

[45]

J. Folkman and R. Kalluri, Tumor angiogenesis,, in, (2003). Google Scholar

[46]

K. Forsten-Williams, C. C. Chua and M. A. Nugent, The kinetics of fgf-2 binding to heparan sulfate proteoglycans and map kinase signaling,, J. Theor. Biol., 233 (2005), 483. Google Scholar

[47]

J. A. Fozard, H. M. Byrne, O. E. Jensen and J. R. King, Continuum approximations of individual-based models for epithelial monolayers,, Mathematical Medicine and Biology, 27 (2010), 39. doi: 10.1093/imammb/dqp015. Google Scholar

[48]

M. Franco, P. Roswall, E. Cortez, D. Hanahan and K. Pietras, Pericytes promote endothelial cell survival through induction of autocrine vegf-a signaling and bcl-w expression,, Blood, 118 (2011), 2906. Google Scholar

[49]

S. Fukuhara, K. Sako, K. Noda, et al, Tie2 is tied at the cell-cell contacts and to extracellular matrix by angiopoietin-1,, Exp. Mol. Med., 41 (2009). Google Scholar

[50]

S. Fukuhara, K. Sako, K Noda, et al, Angiopoietin-1/Tie2 receptor signaling in vascular quiescence and angiogenesis,, Histol. Histopathol., 25 (2010), 387. Google Scholar

[51]

K. Gaengel, G. Genove, A. Armulik and C. Betsholtz, Endothelial-mural cell signaling in vascular development and angiogenesis,, Arterioscler. Thromb. Vasc. Biol., 29 (2009), 630. Google Scholar

[52]

A. Gamba, D. Ambrosi, A. Coniglio, et al, Percolation, morphogenesis, and burgers dynamics in blood vessels formation,, Phys. Rev. Lett., 90 (2003). Google Scholar

[53]

J. R. Gamble, J. Drew, L. Trezise, et al, Angiopoietin-1 is an antipermeability and anti-inflammatory agent in vitro and targets cell junctions,, Circ. Res., 87 (2000), 603. Google Scholar

[54]

K. Garikipati, The kinematics of biological growth,, Appl. Mech. Rev., 62 (2009). Google Scholar

[55]

H. Gerber, A. McMurtrey, J. Kowalski, et al, Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3'-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation,, J. Biol. Chem., 273 (1998), 30336. Google Scholar

[56]

H. Gerhardt, M. Golding, M. Fruttiger, et al, VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia,, J. Cell Biol., 161 (2003), 1163. Google Scholar

[57]

J. L. Gevertz and S. Torquato, Modeling the effects of vasculature evolution on early brain tumor growth,, J. Theor. Biol., 243 (2006), 517. doi: 10.1016/j.jtbi.2006.07.002. Google Scholar

[58]

V. Goede, T. Schmidt, S. Kimmina, D. Kozian and HG Augustin, Analysis of blood vessel maturation processes during cyclic ovarian angiogenesis,, Lab. Invest., 78 (1998). Google Scholar

[59]

H. P. Hammes, J. Lin, P. Wagner, et al, Angiopoietin-2 causes pericyte dropout in the normal retina: Evidence for involvement in diabetic retinopathy,, Diabetes, 53 (2004), 1104. Google Scholar

[60]

D. Hanahan and J. Folkman, Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis,, Cell, 86 (1996), 353. Google Scholar

[61]

R. Harfouche and S. N. A. Hussain, Signaling and regulation of endothelial cell survival by angiopoietin-2,, Am. J. Physiol. Heart Circ. Physiol., 291 (2006), 1635. Google Scholar

[62]

A. Hegen, S. Koidl, K. Weindel, et al, Expression of angiopoietin-2 in endothelial cells is controlled by positive and negative regulatory promoter elements,, Arterioscler. Thromb. Vasc. Biol., 24 (2004), 1803. Google Scholar

[63]

M. Hellström, M. Kalén, P. Lindahl, A. Abramsson and C. Betsholtz, Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse,, Development, 126 (1999), 3047. Google Scholar

[64]

K. K. Hirschi, S. A. Rohovsky, L. H. Beck, S. R. Smith and P. A. D'Amore, Endothelial cells modulate the proliferation of mural cell precursors via platelet-derived growth factor-BB and heterotypic cell contact,, Circ. Res., 84 (1999), 298. Google Scholar

[65]

J. Holash, P. C. Maisonpierre, D. Compton, et al, Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF,, Science, 284 (1999), 1994. Google Scholar

[66]

M. J. Holmes and B. D. Sleeman, A mathematical model of tumour angiogenesis incorporating cellular traction and viscoelastic effects,, J. Theor. Biol., 202 (2000), 95. Google Scholar

[67]

J. Huang, J. O. Bae, J. P. Tsai, et al, Angiopoietin-1/Tie-2 activation contributes to vascular survival and tumor growth during VEGF blockade,, Int J Oncol, 34 (2009), 79. Google Scholar

[68]

T. L. Jackson and X. Zheng, A cell-based model of endothelial cell elongation, proliferation and maturation during corneal angiogenesis,, Bull. Math. Biol., 72 (2010), 830. doi: 10.1007/s11538-009-9471-1. Google Scholar

[69]

R. K. Jain, Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy,, Science, 307 (2005), 58. Google Scholar

[70]

C. Jang, Y. J. Koh, N. K. Lim, et al, Angiopoietin-2 exocytosis is stimulated by sphingosine-1-phosphate in human blood and lymphatic endothelial cells,, Arterioscler. Thromb. Vasc. Biol., 29 (2009), 401. Google Scholar

[71]

N. Jo, C. Mailhos, M. Ju, et al, Inhibition of platelet-derived growth factor B signaling enhances the efficacy of anti-vascular endothelial growth factor therapy in multiple models of ocular neovascularization,, Am. J. Pathol., 168 (2006), 2036. Google Scholar

[72]

E. Karl, K. Warner, B. Zeitlin, et al, Bcl-2 acts in a proangiogenic signaling pathway through nuclear factor-$\kappa$B and CXC chemokines,, Cancer Res., 65 (2005), 5063. Google Scholar

[73]

I. Kim, H. G. Kim, J. So, et al, Angiopoietin-1 regulates endothelial cell survival through the phosphatidylinositol 3'-Kinase/Akt signal transduction pathway,, Circ. Res., 86 (2000), 24. Google Scholar

[74]

I. Kim, J. H. Kim, Y. S. Ryu, M. Liu and G. Y. Koh, Tumor necrosis factor-$\alpha$ upregulates angiopoietin-2 in human umbilical vein endothelial cells,, Biochem. Biophys. Res. Commun., 269 (2000), 361. Google Scholar

[75]

K. Kim et al, Oligomerization and multimerization are critical for angiopoietin-1 to bind and phosphorylate tie2,, J. Biol. Chem., 280 (2005), 20126. Google Scholar

[76]

S. Koch, S. Tugues, X. Li, L. Gualandi and L. Claesson-Welsh, Signal transduction by vascular endothelial growth factor receptors,, Biochem. J., 437 (2011), 169. Google Scholar

[77]

Y. J. Koh, H.-Z. Kim, S.-I. Hwang, et al, Double antiangiogenic protein, DAAP, targeting VEGF-A and angiopoietins in tumor angiogenesis, metastasis, and vascular leakage,, Cancer Cell, 18 (2010), 171. Google Scholar

[78]

R. Kowalczyk, Preventing blow-up in a chemotaxis model,, J. Math. Anal. Appl., 305 (2005), 566. doi: 10.1016/j.jmaa.2004.12.009. Google Scholar

[79]

K. Larripa and A. Mogilner, Transport of a 1D viscoelastic actin-myosin strip of gel as a model of a crawling cell,, Physica A, 372 (2006), 113. Google Scholar

[80]

H. A. Levine and M. Nilsen-Hamilton, Angiogenesis - A biochemial/mathematical perspective,, in, (2006). doi: 10.1007/11561606_2. Google Scholar

[81]

H. A. Levine, S. Pamuk, B. D. Sleeman and M. Nilsen-Hamilton, Mathematical modeling of capillary formation and development in tumor angiogenesis: Penetration into the stroma,, Bull. Math. Biol., 63 (2001), 801. Google Scholar

[82]

H. A. Levine, B. D. Sleeman and M. Nilsen-Hamilton, A mathematical model for the roles of pericytes and macrophages in the initiation of angiogenesis. I. the role of protease inhibitors in preventing angiogenesis,, Math. Biosci., 168 (2000), 77. doi: 10.1016/S0025-5564(00)00034-1. Google Scholar

[83]

F. Li and X. Zheng, Singularity analysis of a reaction-diffusion equation with a solution-dependent dirac delta source,, Appl. Math. Lett., 25 (2012), 2179. Google Scholar

[84]

G. Liu, A. Qutub, P. Vempati, F. Mac Gabhann and A. Popel, Module-based multiscale simulation of angiogenesis in skeletal muscle,, Theor. Biol. Med. Model., 8 (2011). Google Scholar

[85]

I. B. Lobov, P. C. Brooks and R. A. Lang, Angiopoietin-2 displays VEGF-dependent modulation of capillary structure and endothelial cell survival in vivo,, PNAS, 99 (2002), 11205. Google Scholar

[86]

N. R. London, K. J. Whitehead and D. Y. Li, Endogenous endothelial cell signaling systems maintain vascular stability,, Angiogenesis, 12 (2009), 149. Google Scholar

[87]

B. Loret and F. M. F. Simes, A framework for deformation, generalized diffusion, mass transfer and growth in multi-species multi-phase biological tissues,, Eur. J. Mech. A-Solid, 24 (2005), 757. doi: 10.1016/j.euromechsol.2005.05.005. Google Scholar

[88]

C. Lu, A. A. Kamat, Y. G. Lin, et al, Dual targeting of endothelial cells and pericytes in antivascular therapy for ovarian carcinoma,, Clin. Cancer Res., 13 (2007), 4209. Google Scholar

[89]

C. Lu, P. H. Thaker, Y. G. Lin, et al, Impact of vessel maturation on anti-angiogenic therapy in ovarian cancer,, Am. J. Obstet. Gynecol., 198 (2008). Google Scholar

[90]

R. Mabry, D. G Gilbertson, A. Frank, et al, A dual-targeting pdgfrbeta/vegf-a molecule assembled from stable antibody fragments demonstrates anti-angiogenic activity in vitro and in vivo,, mAbs, 2 (2010), 20. Google Scholar

[91]

F. Mac Gabhann and A. S. Popel, Model of competitive binding of vascular endothelial growth factor and placental growth factor to VEGF receptors on endothelial cells,, Am. J. Physiol. Heart Circ. Physiol., 286 (2004), 153. Google Scholar

[92]

F. Mac Gabhann and A. S. Popel, Targeting neuropilin-1 to inhibit vegf signaling in cancer: Comparison of therapeutic approaches,, PLoS Comput. Biol., 2 (2006). Google Scholar

[93]

F. Mac Gabhann and A. S. Popel, Dimerization of VEGF receptors and implications for signal transduction: A computational study,, Biophys. Chem., 128 (2007), 125. Google Scholar

[94]

P. C. Maisonpierre, C. Suri, P. F. Jones, et al, Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis,, Science, 277 (1997), 55. Google Scholar

[95]

S. J. Mandriota and M. S. Pepper, Regulation of angiopoietin-2 mRNA levels in bovine microvascular endothelial cells by cytokines and hypoxia,, Circ. Res., 83 (1998), 852. Google Scholar

[96]

D. Manoussaki, A mechanochemical model of angiogenesis and vasculogenesis,, ESAIM: Mathematical Modelling and Numerical Analysis, 37 (2003), 581. doi: 10.1051/m2an:2003046. Google Scholar

[97]

N. Mantzaris, S. Webb and H. G. Othmer, Mathematical modeling of tumor-induced angiogenesis,, J. Math Biol., 49 (2004), 111. doi: 10.1007/s00285-003-0262-2. Google Scholar

[98]

K. Matsushita, M. Yamakuchi, C. N. Morrell, et al, Vascular endothelial growth factor regulation of Weibel-Palade-body exocytosis,, Blood, 105 (2005). Google Scholar

[99]

S. R. McDougall, A. R. A. Anderson and M. A. J. Chaplain, Mathematical modelling of dynamic adaptive tumour-induced angiogenesis: Clinical implications and therapeutic targeting strategies,, J. Theor. Biol., 241 (2006), 564. doi: 10.1016/j.jtbi.2005.12.022. Google Scholar

[100]

S. R. McDougall, M. A. J. Chaplain, A. Stéphanou and A. R. A. Anderson, Modelling the impact of pericyte migration and coverage of vessels on the efficacy of vascular disrupting agents,, Math. Model. Nat. Phenom., 5 (2010), 163. doi: 10.1051/mmnp/20105108. Google Scholar

[101]

Q. Mi, D. Swigon, et al, One-dimensional elastic continuum model of enterocyte layer migration,, Biophys. J., 93 (2007), 3745. Google Scholar

[102]

F. Milde, M. Bergdorf and P. Koumoutsakos, A hybrid model for three-dimensional simulations of sprouting angiogenesis,, Biophys. J., 95 (2008), 3146. Google Scholar

[103]

R. Muñoz Chápuli, A. R. Quesada and M. Ángel Medina, Angiogenesis and signal transduction in endothelial cells,, Cell. Mol. Life Sci., 61 (2004), 2224. Google Scholar

[104]

G. N. Naumov, E. Bender, Zurakowski, et al, A model of human tumor dormancy: An angiogenic switch from the nonangiogenic phenotype,, J. Natl. Cancer Inst., 98 (2006), 316. Google Scholar

[105]

J. Nor and P. Polverini, Role of endothelial cell survival and death signals in angiogenesis,, Angiogenesis, 3 (1999), 101. Google Scholar

[106]

H. Oh, H. Takagi, K. Suzuma, et al, Hypoxia and vascular endothelial growth factor selectively up-regulate angiopoietin-2 in bovine microvascular endothelial cells,, J. Biol. Chem., 274 (1999), 15732. Google Scholar

[107]

J. Oliner et al, Suppression of angiogenesis and tumor growth by selective inhibition of angiopoietin-2,, Cancer Cell, 6 (2004), 507. Google Scholar

[108]

M. R. Owen, T. Alarcon, P. K. Maini and H. M. Byrne, Angiogenesis and vascular remodelling in normal and cancerous tissues,, J. Theor. Biol., 58 (2009), 689. doi: 10.1007/s00285-008-0213-z. Google Scholar

[109]

S. M. Parikh, T. Mammoto, A. Schultz, et al, Excess circulating angiopoietin-2 may contribute to pulmonary vascular leak in sepsis in humans,, PLoS Med., 3 (2006). Google Scholar

[110]

S. M. Peirce, Computational and mathematical modeling of angiogenesis,, Microcirculation, 15 (2008), 739. Google Scholar

[111]

S. M. Peirce, E. J. Van Gieson and T. C. Skalak, Multicellular simulation predicts microvascular patterning and in silico tissue assembly,, FASEB J., 18 (2004), 731. Google Scholar

[112]

K. Pietras and D. Hanahan, A multitargeted, metronomic, and maximum-tolerated dose chemo-switch regimen is antiangiogenic, producing objective responses and survival benefit in a mouse model of cancer,, J. Clin. Oncol., 23 (2005), 939. Google Scholar

[113]

M. J. Plank and B. D. Sleeman, A reinforced random walk model of tumor angiogenesis and anti-angiogenesis strategies,, IMA J. Math. Med. Biol., 20 (2003), 135. Google Scholar

[114]

M. J. Plank and B. D. Sleeman, Lattice and non-lattice models of tumour angiogenesis,, Bull. Math. Biol., 66 (2004), 1785. doi: 10.1016/j.bulm.2004.04.001. Google Scholar

[115]

M. J. Plank, B. D. Sleeman and P. F. Jones, A mathematical model of tumour angiogenesis, regulated by vascular endothelial growth factor and the angiopoietins,, J. Theor. Biol., 229 (2004), 435. doi: 10.1016/j.jtbi.2004.04.012. Google Scholar

[116]

M. Prass, K. Jacobson, A. Mogilner and M. Radmacher, Direct measurement of the lamellipodial protrusive force in a migrating cell,, J. Cell Biol., 174 (2006), 767. Google Scholar

[117]

A. A. Qutub, F. Mac Gabhann, E. D. Karagiannis, P. Vempati and A. S. Popel, Multiscale models of angiogenesis,, IEEE Eng. Med. Biol. Mag., 28 (2009), 14. Google Scholar

[118]

A. A. Qutub and A. Popel, Elongation, proliferation $&$ migration differentiate endothelial cell phenotypes and determine capillary sprouting,, BMC Syst. Biol., 3 (2009). Google Scholar

[119]

A. Ramasubramanian and L. Taber, Computational modeling of morphogenesis regulated by mechanical feedback,, Biomech. Model. Mechanobiol., 7 (2008), 77. Google Scholar

[120]

A. Raza, M. J. Franklin and A. Z. Dudek, Pericytes and vessel maturation during tumor angiogenesis and metastasis,, Am. J. Hematol., 85 (2010), 593. Google Scholar

[121]

Y. Reiss, J. Droste, M. Heil, et al, Angiopoietin-2 impairs revascularization after limb ischemia,, Circ. Res., 101 (2007), 88. Google Scholar

[122]

E. K. Rodriguez, A. Hoger and A. D. McCulloch, Stress-dependent finite growth in soft elastic tissues,, J. Biomech., 27 (1994), 455. Google Scholar

[123]

P. Saharinen, L. Eklund, J. Miettinen, et al, Angiopoietins assemble distinct Tie2 signalling complexes in endothelial cell-cell and cell-matrix contacts,, Nat. Cell Biol., 10 (2008), 527. Google Scholar

[124]

R.C. Schugart, A. Friedman, R. Zhao and C. K. Sen, Wound angiogenesis as a function of tissue oxygen tension: A mathematical model,, PNAS, 105 (2008), 2628. Google Scholar

[125]

C. E. Semino, R. D. Kamm and D. A. Lauffenburger, Autocrine EGF receptor activation mediates endothelial cell migration and vascular morphogenesis induced by VEGF under interstitial flow,, Exp. Cell Res., 312 (2006), 289. Google Scholar

[126]

G. Serini, D. Ambrosi, E. Giraudo, et al, Modeling the early stages of vascular network assembly,, EMBO J., 22 (2003), 1771. Google Scholar

[127]

C. Sfiligoi, A. de Luca, I. Cascone, et al, Angiopoietin-2 expression in breast cancer correlates with lymph node invasion and short survival,, Int. J. Cancer, 103 (2003), 466. Google Scholar

[128]

J. Shen et al, An antibody directed against pdgf receptor enhances the antitumor and the anti-angiogenic activities of an anti-vegf receptor 2 antibody,, Biochem. Biophys. Res. Commun., 357 (2007), 1142. Google Scholar

[129]

J. A. Sherratt and J. D. Murrat, Models of epidermal wound healing,, Proc. R. Soc. Lond. B., 241 (1990), 29. Google Scholar

[130]

M. M. Sholley, G. P. Ferguson, H. R. Seibel, et al, Mechanisms of neovascularization. Vascular sprouting can occur without proliferation of endothelial cells,, Lab. Invest., 51 (1984), 624. Google Scholar

[131]

B. D. Sleeman and I. P. Wallis, Tumour induced angiogenesis as a reinforced random walk: modeling capillary network formation without endothelial cell proliferation,, Math. Comput. Model., 36 (2002), 339. doi: 10.1016/S0895-7177(02)00129-2. Google Scholar

[132]

A. Stephanou, S. R. McDougall, A. R. A. Anderson and M. A. J. Chaplain, Mathematical modelling of the influence of blood rheological properties upon adaptative tumour-induced angiogenesis,, J. Theor. Biol., 44 (2006), 96. doi: 10.1016/j.mcm.2004.07.021. Google Scholar

[133]

C. L. Stokes and D. A. Lauffenburger, Analysis of the roles of microvessel endothelial cell random mobility and chemotaxis in angiogenesis,, J. Ther. Biol., 152 (1991), 377. Google Scholar

[134]

S. Sun, M. F. Wheeler, M. Obeyesekere and C. Patrick, A deterministic model of growth factor-induced angiogenesis,, Bull. Math. Biol., 67 (2005), 313. doi: 10.1016/j.bulm.2004.07.004. Google Scholar

[135]

C. Sundberg, M. Kowanetz, L.F. Brown, M. Detmar and H. F. Dvorak, Stable expression of angiopoietin-1 and other markers by cultured pericytes: Phenotypic similarities to a subpopulation of cells in maturing vessels during later stages of angiogenesis in vivo,, Lab. Invest., 82 (2002), 387. Google Scholar

[136]

C. Suri, P. F. Jones, S. Patan, et al, Requisite role of angiopoietin-1, a ligand for the Tie2 receptor, during embryonic angiogenesis,, Cell, 87 (1996), 1171. Google Scholar

[137]

A. Szabo, E. D. Perryn and A. Czirok, Network formation of tissue cells via preferential attraction to elongated structures,, Phys. Rev. Lett., 98 (2007). Google Scholar

[138]

D. Szczerba, H. Kurz and G. Szekely, A computational model of intussusceptive microvascular growth and remodeling,, J. Theor. Biol., 261 (2009), 570. Google Scholar

[139]

C. R. Tait and P. F. Jones, Angiopoietins in tumours: the angiogenic switch,, J. Pathol., 204 (2004), 1. Google Scholar

[140]

K. Teichert-Kuliszewska, P. C. Maisonpierre, N. Jones, et al, Biological action of angiopoietin-2 in a fibrin matrix model of angiogenesis is associated with activation of Tie2,, Cardiovasc. Res., 49 (2001), 659. Google Scholar

[141]

L. J. Thompson, F. Wang, A. D. Proia, et al, Proteome analysis of the rat cornea during angiogenesis,, Proteomics, 3 (2003), 2258. Google Scholar

[142]

O. Thoumine and A. Ott, Time scale dependent viscoelastic and contractile regimes in fibroblasts probed by microplate manipulation,, J. Cell Sci., 110 (1997), 2109. Google Scholar

[143]

G. Thurston, J. S. Rudge, E. Ioffe, et al, Angiopoietin-1 protects the adult vasculature against plasma leakage,, Nat. Med., 6 (2000), 460. Google Scholar

[144]

G. Thurston, C. Suri, K. Smith, et al, Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin 2,, Science, 286 (1999), 2511. Google Scholar

[145]

S. Tong and F. Yuan, Numerical simulations of angiogenesis in the cornea,, Microvasc. Res., 61 (2001), 14. Google Scholar

[146]

R. D. M. Travasso, E. Corvera Poir, M. Castro, et al, Tumor angiogenesis and vascular patterning: A mathematical model,, PLoS ONE, 6 (2011). Google Scholar

[147]

R. Tyson, L. G. Stern and R. J. LeVeque, Fractional step methods applied to a chemotaxis model,, J. Math. Biol., 41 (2000), 455. doi: 10.1007/s002850000038. Google Scholar

[148]

K. Y. Volokh, Stresses in growing soft tissues,, Acta Biomater., 2 (2006), 493. Google Scholar

[149]

S. Wakui, K. Yokoo, T. Muto, et al, Localization of Ang-1, -2, Tie-2, and VEGF expression at endothelial-pericyte interdigitation in rat angiogenesis,, Lab. Invest., 86 (2006), 1172. Google Scholar

[150]

R. Wcislo, W. Dzwinel, D. Yuen and A. Dudek, A 3-D model of tumor progression based on complex automata driven by particle dynamics,, J. Mol. Model., 15 (2009), 1517. Google Scholar

[151]

M. Welter, K. Bartha and H. Rieger, Vascular remodelling of an arterio-venous blood vessel network during solid tumour growth,, J. Theor. Biol., 259 (2009), 405. Google Scholar

[152]

R. R. White, S. Shan, C. P. Rusconi, et al, Inhibition of rat corneal angiogenesis by a nuclease-resistant RNA aptamer specific for angiopoietin-2,, PNAS, 100 (2003), 5028. Google Scholar

[153]

J. L. Wilkinson-Berka, S. Babic, T. de Gooyer, et al, Inhibition of platelet-derived growth factor promotes pericyte loss and angiogenesis in ischemic retinopathy,, Am. J. Pathol., 164 (2004), 1263. Google Scholar

[154]

J. Wu, Q. Long, Xu S. and A. R. Padhani, Study of tumor blood perfusion and its variation due to vascular normalization by anti-angiogenic therapy based on 3d angiogenic microvasculature,, J. Biomech., 42 (2009), 712. Google Scholar

[155]

C. Xue, A. Friedman and C. K. Sen, A mathematical model of ischemic cutaneous wounds,, PNAS, 106 (2009), 16782. Google Scholar

[156]

S. Yang and T. Saif, Reversible and repeatable linear local cell force response under large stretches,, Exp. Cell Res., 305 (2005), 42. Google Scholar

[157]

H. T. Yuan, E. V. Khankin, S. A. Karumanchi and S. M. Parikh, Angiopoietin 2 is a partial agonist/antagonist of Tie2 signaling in the endothelium,, Mol. Cell. Biol., 29 (2009), 2011. Google Scholar

[158]

H. T. Yuan, P. G. Tipping, X. Z. Li, D. A. Long and A. S. Woolf, Angiopoietin correlates with glomerular capillary loss in anti-glomerular basement membrane glomerulonephritis,, Kidney Int., 61 (2002), 2078. Google Scholar

[159]

L. Zhang, N. Yang, J. Park, et al, Tumor-derived vascular endothelial growth factor up-regulates angiopoietin-2 in host endothelium and destabilizes host vasculature, supporting angiogenesis in ovarian cancer,, Cancer Res., 63 (2003), 3403. Google Scholar

[160]

X. Zheng, Y. Kim, L. Rakesh and E.-B. Lin, A conservative multiresolution finite volume method for reaction and diffusion in angiogenesis,, Submitted., (). Google Scholar

[161]

X. Zheng, S. Wise and V. Cristini, Nonlinear simulation of tumor necrosis, neovascularization and tissue invasion via an adaptive finite-element/level-set method,, Bull. Math. Biol., 67 (2005), 211. doi: 10.1016/j.bulm.2004.08.001. Google Scholar

[162]

X. Zheng and C. Xie, A viscoelastic model of blood capillary extension and regression: Derivation, analysis, and simulation,, J. Math. Biol., (2012). doi: 10.1007/s00285-012-0624-8. Google Scholar

[1]

Thierry Colin, Marie-Christine Durrieu, Julie Joie, Yifeng Lei, Youcef Mammeri, Clair Poignard, Olivier Saut. Modeling of the migration of endothelial cells on bioactive micropatterned polymers. Mathematical Biosciences & Engineering, 2013, 10 (4) : 997-1015. doi: 10.3934/mbe.2013.10.997

[2]

Julie Joie, Yifeng Lei, Marie-Christine Durrieu, Thierry Colin, Clair Poignard, Olivier Saut. Migration and orientation of endothelial cells on micropatterned polymers: A simple model based on classical mechanics. Discrete & Continuous Dynamical Systems - B, 2015, 20 (4) : 1059-1076. doi: 10.3934/dcdsb.2015.20.1059

[3]

Shaoyong Lai, Yulan Zhou. A stochastic optimal growth model with a depreciation factor. Journal of Industrial & Management Optimization, 2010, 6 (2) : 283-297. doi: 10.3934/jimo.2010.6.283

[4]

Justin P. Peters, Khalid Boushaba, Marit Nilsen-Hamilton. A Mathematical Model for Fibroblast Growth Factor Competition Based on Enzyme. Mathematical Biosciences & Engineering, 2005, 2 (4) : 789-810. doi: 10.3934/mbe.2005.2.789

[5]

Zejia Wang, Suzhen Xu, Huijuan Song. Stationary solutions of a free boundary problem modeling growth of angiogenesis tumor with inhibitor. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2593-2605. doi: 10.3934/dcdsb.2018129

[6]

Mostafa Adimy, Fabien Crauste. Modeling and asymptotic stability of a growth factor-dependent stem cell dynamics model with distributed delay. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 19-38. doi: 10.3934/dcdsb.2007.8.19

[7]

Marzena Dolbniak, Malgorzata Kardynska, Jaroslaw Smieja. Sensitivity of combined chemo-and antiangiogenic therapy results in different models describing cancer growth. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 145-160. doi: 10.3934/dcdsb.2018009

[8]

Zhi-An Wang. Wavefront of an angiogenesis model. Discrete & Continuous Dynamical Systems - B, 2012, 17 (8) : 2849-2860. doi: 10.3934/dcdsb.2012.17.2849

[9]

Xuchen Lin, Ting-Jie Lu, Xia Chen. Total factor productivity growth and technological change in the telecommunications industry. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 795-809. doi: 10.3934/dcdss.2019053

[10]

Didier Bresch, Thierry Colin, Emmanuel Grenier, Benjamin Ribba, Olivier Saut. A viscoelastic model for avascular tumor growth. Conference Publications, 2009, 2009 (Special) : 101-108. doi: 10.3934/proc.2009.2009.101

[11]

Emad Attia, Marek Bodnar, Urszula Foryś. Angiogenesis model with Erlang distributed delays. Mathematical Biosciences & Engineering, 2017, 14 (1) : 1-15. doi: 10.3934/mbe.2017001

[12]

Xianhua Tang, Xingfu Zou. A 3/2 stability result for a regulated logistic growth model. Discrete & Continuous Dynamical Systems - B, 2002, 2 (2) : 265-278. doi: 10.3934/dcdsb.2002.2.265

[13]

Yangjin Kim, Seongwon Lee, You-Sun Kim, Sean Lawler, Yong Song Gho, Yoon-Keun Kim, Hyung Ju Hwang. Regulation of Th1/Th2 cells in asthma development: A mathematical model. Mathematical Biosciences & Engineering, 2013, 10 (4) : 1095-1133. doi: 10.3934/mbe.2013.10.1095

[14]

Kai-Uwe Schmidt. The merit factor of binary arrays derived from the quadratic character. Advances in Mathematics of Communications, 2011, 5 (4) : 589-607. doi: 10.3934/amc.2011.5.589

[15]

Xiong Li, Hao Wang. A stoichiometrically derived algal growth model and its global analysis. Mathematical Biosciences & Engineering, 2010, 7 (4) : 825-836. doi: 10.3934/mbe.2010.7.825

[16]

Marek Bodnar, Monika Joanna Piotrowska, Urszula Foryś, Ewa Nizińska. Model of tumour angiogenesis -- analysis of stability with respect to delays. Mathematical Biosciences & Engineering, 2013, 10 (1) : 19-35. doi: 10.3934/mbe.2013.10.19

[17]

Manuel Delgado, Inmaculada Gayte, Cristian Morales-Rodrigo, Antonio Suárez. On a chemotaxis model with competitive terms arising in angiogenesis. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 177-202. doi: 10.3934/dcdss.2020010

[18]

J. Ignacio Tello. On a mathematical model of tumor growth based on cancer stem cells. Mathematical Biosciences & Engineering, 2013, 10 (1) : 263-278. doi: 10.3934/mbe.2013.10.263

[19]

Steffen Eikenberry, Sarah Hews, John D. Nagy, Yang Kuang. The dynamics of a delay model of hepatitis B virus infection with logistic hepatocyte growth. Mathematical Biosciences & Engineering, 2009, 6 (2) : 283-299. doi: 10.3934/mbe.2009.6.283

[20]

Ke Ruan, Masao Fukushima. Robust portfolio selection with a combined WCVaR and factor model. Journal of Industrial & Management Optimization, 2012, 8 (2) : 343-362. doi: 10.3934/jimo.2012.8.343

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (47)
  • HTML views (0)
  • Cited by (19)

[Back to Top]