# American Institute of Mathematical Sciences

May  2012, 17(3): 801-834. doi: 10.3934/dcdsb.2012.17.801

## Validity of the Reynolds equation for miscible fluids in microchannels

 1 Univ. Bordeaux, IMB, UMR 5251, F-33400 Talence, France, France 2 LMA, Téléport 2- BP 30179, Boulevard Pierre et Marie Curie, 86962 Futuroscope Chasseneuil Cedex, France

Received  March 2011 Revised  September 2011 Published  January 2012

In this paper, we consider asymptotic models for miscible flows in microchannels. The characteristics of the flows in microfluidics imply that usually the Hele-Shaw approximation is valid. We present asymptotic models in the Hele-Shaw regime for flows of miscible fluids in a channel in the case where the bottom and the top of the channels have been modified in two different ways. The first case concerns a flat bottom with slip boundary conditions obtained by chemical patterning. The second one is a non-flat bottom with a non-slipping surface. We derive in both cases 2.5D and 2D asymptotic models. We prove global well-posedness of the 2D model. We also prove that both approaches are asymptotically equivalent in the Hele-Shaw regime and we present direct 3D simulations showing that for passive mixing strategy, the Hele-Shaw approximation is not valid anymore.
Citation: Mathieu Colin, Thierry Colin, Julien Dambrine. Validity of the Reynolds equation for miscible fluids in microchannels. Discrete & Continuous Dynamical Systems - B, 2012, 17 (3) : 801-834. doi: 10.3934/dcdsb.2012.17.801
##### References:
 [1] G. Bayada and M. Chambat, New models in the theory of the hydrodynamic bifurcation of rough surfaces,, J. Tribol., 110 (1988), 402. doi: 10.1115/1.3261642. Google Scholar [2] F. Boyer, Mathematical study of multi-phase flow under shear through order parameter formulation,, Asymptotic Analysis, 20 (1999), 175. Google Scholar [3] F. Boyer and P. Fabrie, "Éléments d'Analyse pour l'Étude de Quelques Modèles d'Écoulements de Fluides Visqueux Incompressibles,", Mathématiques & Applications (Berlin), 52 (2006). Google Scholar [4] D. Bresch, C. Choquet, L. Chupin, T. Colin and M. Gisclon, Roughness-induced effect at main order on the Reynolds approximation,, Multiscale Modeling and Simulation, 8 (2010), 997. doi: 10.1137/090754996. Google Scholar [5] J. Dambrine, "Modélisation et Étude Numérique de Quelques Écoulements de Fluides Complexes en Microfluidiques,", Thèse de l'Université Bordeaux 1, (2009). Google Scholar [6] J. Dambrine, B. Géraud and J. B. Salmon, Interdiffusion of liquids of different viscosities in a microchannel,, New Journal of Physics, (2009). Google Scholar [7] J. Fernandez, P. Kurowski, P. Petitjean and E. Meiburg, Density-driven unstable flows of miscible fluids in a Hele-Shaw cell,, J. Fluid. Mech., 451 (2002), 239. Google Scholar [8] C. G. Gal and M. Grasselli, Instability of two-phase flows: A lower bound on the dimension of the global attractor of the Cahn-Hilliard-Navier-Stokes system,, Physica D, 240 (2011), 629. doi: 10.1016/j.physd.2010.11.014. Google Scholar [9] D. Gérard-Varet and N. Masmoudi, Relevance of the slip condition for fluid flows near an irregular boundary,, Comm. Math. Phys., 295 (2010), 99. Google Scholar [10] A. Günther, K.-F. Jensen, Multiphase microfluidics: From flow characteristics to chemical and material synthesis,, Lab on a Chip, (2006). Google Scholar [11] D. Joseph and Y. Renardy, "Fundamentals of Two Fluid Dynamics. Part I. Mathematical Theory and Applications,", Interdisciplinary Applied Mathematics, 3 (1993). Google Scholar [12] G. Karniadakis and A. Beskok, "Micro Flows: Fundamental and Simulation,", Springer-Verlag, (2002). Google Scholar [13] O. Kuksenok and A. C. Balazs, Simulating the dynamic behavior of immiscible binary fluids in three-dimensional chemically patterned microchannels,, Physical Review E, (2003). Google Scholar [14] O. Kuksenok and A. C. Balazs, Structures formation in binary fluids driven through patterned microchannels: Effect of hydrodynamics and arrangement of surface patterns,, Physica D, (2004). Google Scholar [15] S. Li, J. Lowengrub and P. Leo, A rescaling scheme with application to the long-time simulation of viscous fingering in a Hele-Shaw cell,, J. Comp. Phys., 225 (2007), 534. Google Scholar [16] X.-D. Liu, S. Osher and T. Chan, Weighted essentially non-oscillatory schemes,, Journal of Computational Physics, 115 (1994), 200. doi: 10.1006/jcph.1994.1187. Google Scholar [17] N.-T. Nguyen and Z. Wu, Micromixers-a review,, Journal of Micromechanics and Microengineering, (2010). Google Scholar [18] P. G. Saffman and G. Taylor, The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid,, Proc. of the Roy. Soc. London Ser A, 245 (1958), 312. doi: 10.1098/rspa.1958.0085. Google Scholar [19] D. Schafroth, N. Goyal and E. Meiburg, Miscible displacements in Hele-Shaw cells: Nonmonotonic viscosity profiles,, European Journal of Mechanics B Fluids, 26 (2007), 444. doi: 10.1016/j.euromechflu.2006.09.001. Google Scholar [20] J. Simon, Compacts sets in the space $L^p(0,T;B)$,, Annali. Mat. Pura. Applicata. (4), 146 (1987), 65. Google Scholar [21] A. D. Stroock, S. K. W. Dertinger, A. Adjari, I. Mezić, H. A. Stone and G. M. Whitesides, Chaotic mixers in microchannels,, Science, (2002). Google Scholar [22] A. D. Stroock, S. K. W. Dertinger, G. M. Whitesides and A. Adjari, Patterning flows using grooved surfaces,, Analytical Chemistry, (2002). Google Scholar

show all references

##### References:
 [1] G. Bayada and M. Chambat, New models in the theory of the hydrodynamic bifurcation of rough surfaces,, J. Tribol., 110 (1988), 402. doi: 10.1115/1.3261642. Google Scholar [2] F. Boyer, Mathematical study of multi-phase flow under shear through order parameter formulation,, Asymptotic Analysis, 20 (1999), 175. Google Scholar [3] F. Boyer and P. Fabrie, "Éléments d'Analyse pour l'Étude de Quelques Modèles d'Écoulements de Fluides Visqueux Incompressibles,", Mathématiques & Applications (Berlin), 52 (2006). Google Scholar [4] D. Bresch, C. Choquet, L. Chupin, T. Colin and M. Gisclon, Roughness-induced effect at main order on the Reynolds approximation,, Multiscale Modeling and Simulation, 8 (2010), 997. doi: 10.1137/090754996. Google Scholar [5] J. Dambrine, "Modélisation et Étude Numérique de Quelques Écoulements de Fluides Complexes en Microfluidiques,", Thèse de l'Université Bordeaux 1, (2009). Google Scholar [6] J. Dambrine, B. Géraud and J. B. Salmon, Interdiffusion of liquids of different viscosities in a microchannel,, New Journal of Physics, (2009). Google Scholar [7] J. Fernandez, P. Kurowski, P. Petitjean and E. Meiburg, Density-driven unstable flows of miscible fluids in a Hele-Shaw cell,, J. Fluid. Mech., 451 (2002), 239. Google Scholar [8] C. G. Gal and M. Grasselli, Instability of two-phase flows: A lower bound on the dimension of the global attractor of the Cahn-Hilliard-Navier-Stokes system,, Physica D, 240 (2011), 629. doi: 10.1016/j.physd.2010.11.014. Google Scholar [9] D. Gérard-Varet and N. Masmoudi, Relevance of the slip condition for fluid flows near an irregular boundary,, Comm. Math. Phys., 295 (2010), 99. Google Scholar [10] A. Günther, K.-F. Jensen, Multiphase microfluidics: From flow characteristics to chemical and material synthesis,, Lab on a Chip, (2006). Google Scholar [11] D. Joseph and Y. Renardy, "Fundamentals of Two Fluid Dynamics. Part I. Mathematical Theory and Applications,", Interdisciplinary Applied Mathematics, 3 (1993). Google Scholar [12] G. Karniadakis and A. Beskok, "Micro Flows: Fundamental and Simulation,", Springer-Verlag, (2002). Google Scholar [13] O. Kuksenok and A. C. Balazs, Simulating the dynamic behavior of immiscible binary fluids in three-dimensional chemically patterned microchannels,, Physical Review E, (2003). Google Scholar [14] O. Kuksenok and A. C. Balazs, Structures formation in binary fluids driven through patterned microchannels: Effect of hydrodynamics and arrangement of surface patterns,, Physica D, (2004). Google Scholar [15] S. Li, J. Lowengrub and P. Leo, A rescaling scheme with application to the long-time simulation of viscous fingering in a Hele-Shaw cell,, J. Comp. Phys., 225 (2007), 534. Google Scholar [16] X.-D. Liu, S. Osher and T. Chan, Weighted essentially non-oscillatory schemes,, Journal of Computational Physics, 115 (1994), 200. doi: 10.1006/jcph.1994.1187. Google Scholar [17] N.-T. Nguyen and Z. Wu, Micromixers-a review,, Journal of Micromechanics and Microengineering, (2010). Google Scholar [18] P. G. Saffman and G. Taylor, The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid,, Proc. of the Roy. Soc. London Ser A, 245 (1958), 312. doi: 10.1098/rspa.1958.0085. Google Scholar [19] D. Schafroth, N. Goyal and E. Meiburg, Miscible displacements in Hele-Shaw cells: Nonmonotonic viscosity profiles,, European Journal of Mechanics B Fluids, 26 (2007), 444. doi: 10.1016/j.euromechflu.2006.09.001. Google Scholar [20] J. Simon, Compacts sets in the space $L^p(0,T;B)$,, Annali. Mat. Pura. Applicata. (4), 146 (1987), 65. Google Scholar [21] A. D. Stroock, S. K. W. Dertinger, A. Adjari, I. Mezić, H. A. Stone and G. M. Whitesides, Chaotic mixers in microchannels,, Science, (2002). Google Scholar [22] A. D. Stroock, S. K. W. Dertinger, G. M. Whitesides and A. Adjari, Patterning flows using grooved surfaces,, Analytical Chemistry, (2002). Google Scholar
 [1] A. Bernardini, J. Bragard, H. Mancini. Synchronization between two Hele-Shaw Cells. Mathematical Biosciences & Engineering, 2004, 1 (2) : 339-346. doi: 10.3934/mbe.2004.1.339 [2] Hyung Ju Hwang, Youngmin Oh, Marco Antonio Fontelos. The vanishing surface tension limit for the Hele-Shaw problem. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3479-3514. doi: 10.3934/dcdsb.2016108 [3] Nataliya Vasylyeva, Vitalii Overko. The Hele-Shaw problem with surface tension in the case of subdiffusion. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1941-1974. doi: 10.3934/cpaa.2016023 [4] Francesco Della Porta, Maurizio Grasselli. On the nonlocal Cahn-Hilliard-Brinkman and Cahn-Hilliard-Hele-Shaw systems. Communications on Pure & Applied Analysis, 2016, 15 (2) : 299-317. doi: 10.3934/cpaa.2016.15.299 [5] Wenbin Chen, Wenqiang Feng, Yuan Liu, Cheng Wang, Steven M. Wise. A second order energy stable scheme for the Cahn-Hilliard-Hele-Shaw equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 149-182. doi: 10.3934/dcdsb.2018090 [6] FRANCESCO DELLA PORTA, Maurizio Grasselli. Erratum: "On the nonlocal Cahn-Hilliard-Brinkman and Cahn-Hilliard-Hele-Shaw systems" [Comm. Pure Appl. Anal. 15 (2016), 299--317]. Communications on Pure & Applied Analysis, 2017, 16 (1) : 369-372. doi: 10.3934/cpaa.2017018 [7] Angkana Rüland, Mikko Salo. Quantitative approximation properties for the fractional heat equation. Mathematical Control & Related Fields, 2019, 0 (0) : 0-0. doi: 10.3934/mcrf.2019027 [8] Qixuan Wang, Hans G. Othmer. The performance of discrete models of low reynolds number swimmers. Mathematical Biosciences & Engineering, 2015, 12 (6) : 1303-1320. doi: 10.3934/mbe.2015.12.1303 [9] Yanfeng Guo, Jinqiao Duan, Donglong Li. Approximation of random invariant manifolds for a stochastic Swift-Hohenberg equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1701-1715. doi: 10.3934/dcdss.2016071 [10] Chi-Kun Lin, Kung-Chien Wu. On the fluid dynamical approximation to the nonlinear Klein-Gordon equation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2233-2251. doi: 10.3934/dcds.2012.32.2233 [11] Lingbing He, Yulong Zhou. High order approximation for the Boltzmann equation without angular cutoff. Kinetic & Related Models, 2018, 11 (3) : 547-596. doi: 10.3934/krm.2018024 [12] Peter I. Kogut. On approximation of an optimal boundary control problem for linear elliptic equation with unbounded coefficients. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2105-2133. doi: 10.3934/dcds.2014.34.2105 [13] Giuseppe Toscani. A Rosenau-type approach to the approximation of the linear Fokker-Planck equation. Kinetic & Related Models, 2018, 11 (4) : 697-714. doi: 10.3934/krm.2018028 [14] L. Dieci, M. S Jolly, Ricardo Rosa, E. S. Van Vleck. Error in approximation of Lyapunov exponents on inertial manifolds: The Kuramoto-Sivashinsky equation. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 555-580. doi: 10.3934/dcdsb.2008.9.555 [15] Thierry Horsin, Peter I. Kogut, Olivier Wilk. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. II. Approximation of solutions and optimality conditions. Mathematical Control & Related Fields, 2016, 6 (4) : 595-628. doi: 10.3934/mcrf.2016017 [16] Prasanta Kumar Barik, Ankik Kumar Giri. A note on mass-conserving solutions to the coagulation-fragmentation equation by using non-conservative approximation. Kinetic & Related Models, 2018, 11 (5) : 1125-1138. doi: 10.3934/krm.2018043 [17] Xinmin Xiang. The long-time behaviour for nonlinear Schrödinger equation and its rational pseudospectral approximation. Discrete & Continuous Dynamical Systems - B, 2005, 5 (2) : 469-488. doi: 10.3934/dcdsb.2005.5.469 [18] Nicolas Lecoq, Helena Zapolsky, P.K. Galenko. Numerical approximation of the Chan-Hillard equation with memory effects in the dynamics of phase separation. Conference Publications, 2011, 2011 (Special) : 953-962. doi: 10.3934/proc.2011.2011.953 [19] Marie Henry, Danielle Hilhorst, Masayasu Mimura. A reaction-diffusion approximation to an area preserving mean curvature flow coupled with a bulk equation. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 125-154. doi: 10.3934/dcdss.2011.4.125 [20] Jianhai Bao, Xing Huang, Chenggui Yuan. New regularity of kolmogorov equation and application on approximation of semi-linear spdes with Hölder continuous drifts. Communications on Pure & Applied Analysis, 2019, 18 (1) : 341-360. doi: 10.3934/cpaa.2019018

2018 Impact Factor: 1.008

## Metrics

• HTML views (0)
• Cited by (0)

• on AIMS