January  2012, 17(1): 79-99. doi: 10.3934/dcdsb.2012.17.79

On computing heteroclinic trajectories of non-autonomous maps

1. 

Department of Mathematics, Bielefeld University, POB 100131, 33501 Bielefeld, Germany

2. 

Department of Mathematics, Jilin University, Changchun 130012, China

Received  January 2011 Revised  June 2011 Published  October 2011

We propose an adequate notion of a heteroclinic trajectory in non-autonomous systems that generalizes the notion of a heteroclinic orbit of an autonomous system. A heteroclinic trajectory connects two families of semi-bounded trajectories that are bounded in backward and forward time. We apply boundary value techniques for computing one representative of each family. These approximations allow the construction of projection boundary conditions that enable the calculation of a heteroclinic trajectory with high accuracy. The resulting algorithm is applied to non-autonomous toy models as well as to an example from mathematical biology.
Citation: Thorsten Hüls, Yongkui Zou. On computing heteroclinic trajectories of non-autonomous maps. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 79-99. doi: 10.3934/dcdsb.2012.17.79
References:
[1]

A. I. Alonso, J. Hong and R. Obaya, Exponential dichotomy and trichotomy for difference equations,, Comput. Math. Appl., 38 (1999), 41. doi: 10.1016/S0898-1221(99)00167-4. Google Scholar

[2]

W.-J. Beyn, The numerical computation of connecting orbits in dynamical systems,, IMA J. Numer. Anal., 10 (1990), 379. doi: 10.1093/imanum/10.3.379. Google Scholar

[3]

W.-J. Beyn and T. Hüls, Error estimates for approximating non-hyperbolic heteroclinic orbits of maps,, Numer. Math., 99 (2004), 289. doi: 10.1007/s00211-004-0563-4. Google Scholar

[4]

W.-J. Beyn, T. Hüls, J.-M. Kleinkauf and Y. Zou, Numerical analysis of degenerate connecting orbits for maps,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 14 (2004), 3385. doi: 10.1142/S0218127404011405. Google Scholar

[5]

W.-J. Beyn and J.-M. Kleinkauf, The numerical computation of homoclinic orbits for maps,, SIAM J. Numer. Anal., 34 (1997), 1207. doi: 10.1137/S0036142995281693. Google Scholar

[6]

R. L. Devaney, "An Introduction to Chaotic Dynamical Systems," Second edition,, Addison-Wesley Studies in Nonlinearity, (1989). Google Scholar

[7]

A. Dhooge, W. Govaerts and Y. A. Kuznetsov, MATCONT: A MATLAB package for numerical bifurcation analysis of ODEs,, ACM Trans. Math. Software, 29 (2003), 141. doi: 10.1145/779359.779362. Google Scholar

[8]

L. Dieci, C. Elia and E. Van Vleck, Exponential dichotomy on the real line: SVD and QR methods,, J. Differential Equations, 248 (2010), 287. Google Scholar

[9]

S. Elaydi and R. J. Sacker, Global stability of periodic orbits of non-autonomous difference equations and population biology,, J. Differential Equations, 208 (2005), 258. Google Scholar

[10]

S. Elaydi and R. J. Sacker, Nonautonomous Beverton-Holt equations and the Cushing-Henson conjectures,, J. Difference Equ. Appl., 11 (2005), 337. Google Scholar

[11]

J. P. England, B. Krauskopf and H. M. Osinga, Bifurcations of stable sets in noninvertible planar maps,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 15 (2005), 891. doi: 10.1142/S0218127405012466. Google Scholar

[12]

D. Fundinger, Toward the calculation of higher-dimensional stable manifolds and stable sets for noninvertible and piecewise-smooth maps,, J. Nonlinear Sci., 18 (2008), 391. doi: 10.1007/s00332-007-9016-4. Google Scholar

[13]

R. K. Ghaziani, W. Govaerts, Y. A. Kuznetsov and H. G. E. Meijer, Numerical continuation of connecting orbits of maps in MATLAB,, J. Difference Equ. Appl., 15 (2009), 849. Google Scholar

[14]

J. K. Hale and H. Koçak, "Dynamics and Bifurcations," Texts in Applied Mathematics, 3,, Springer-Verlag, (1991). Google Scholar

[15]

M. Hénon, A two-dimensional mapping with a strange attractor,, Comm. Math. Phys., 50 (1976), 69. doi: 10.1007/BF01608556. Google Scholar

[16]

M. W. Hirsch, C. C. Pugh and M. Shub, "Invariant Manifolds,", Lecture Notes in Mathematics, (1977). Google Scholar

[17]

T. Hüls, Numerical computation of dichotomy rates and projectors in discrete time,, Discrete Contin. Dyn. Syst. Ser. B, 12 (2009), 109. doi: 10.3934/dcdsb.2009.12.109. Google Scholar

[18]

T. Hüls, Computing Sacker-Sell spectra in discrete time dynamical systems,, SIAM J. Numer. Anal., 48 (2010), 2043. doi: 10.1137/090754509. Google Scholar

[19]

T. Hüls, Homoclinic trajectories of non-autonomous maps,, J. Difference Equ. Appl., 17 (2011), 9. Google Scholar

[20]

Y. Kang and H. Smith, Global dynamics of a discrete two-species Lottery-Ricker competition model,, To appear in Journal of Biological Dynamics, (2011). Google Scholar

[21]

B. Krauskopf, H. M. Osinga, E. J. Doedel, M. E. Henderson, J. Guckenheimer, A. Vladimirsky, M. Dellnitz and O. Junge, A survey of methods for computing (un)stable manifolds of vector fields,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 15 (2005), 763. Google Scholar

[22]

C. Mira, "Chaotic Dynamics. From the One-Dimensional Endomorphism to the Two-Dimensional Diffeomorphism,", World Scientific Publishing Co., (1987). Google Scholar

[23]

K. J. Palmer, Exponential dichotomies, the shadowing lemma and transversal homoclinic points,, in, 1 (1988), 265. Google Scholar

[24]

G. Papaschinopoulos, Exponential dichotomy for almost periodic linear difference equations,, Ann. Soc. Sci. Bruxelles Sér. I, 102 (1988), 19. Google Scholar

[25]

C. Pötzsche and S. Siegmund, $C^m$ -smoothness of invariant fiber bundles,, Topol. Methods Nonlinear Anal., 24 (2004), 107. Google Scholar

[26]

S. Smale, Differentiable dynamical systems,, Bull. Amer. Math. Soc., 73 (1967), 747. Google Scholar

[27]

S. Wiggins, "Normally Hyperbolic Invariant Manifolds in Dynamical Systems," With the assistance of György Haller and Igor Mezić, Applied Mathematical Sciences, 105,, Springer-Verlag, (1994). Google Scholar

show all references

References:
[1]

A. I. Alonso, J. Hong and R. Obaya, Exponential dichotomy and trichotomy for difference equations,, Comput. Math. Appl., 38 (1999), 41. doi: 10.1016/S0898-1221(99)00167-4. Google Scholar

[2]

W.-J. Beyn, The numerical computation of connecting orbits in dynamical systems,, IMA J. Numer. Anal., 10 (1990), 379. doi: 10.1093/imanum/10.3.379. Google Scholar

[3]

W.-J. Beyn and T. Hüls, Error estimates for approximating non-hyperbolic heteroclinic orbits of maps,, Numer. Math., 99 (2004), 289. doi: 10.1007/s00211-004-0563-4. Google Scholar

[4]

W.-J. Beyn, T. Hüls, J.-M. Kleinkauf and Y. Zou, Numerical analysis of degenerate connecting orbits for maps,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 14 (2004), 3385. doi: 10.1142/S0218127404011405. Google Scholar

[5]

W.-J. Beyn and J.-M. Kleinkauf, The numerical computation of homoclinic orbits for maps,, SIAM J. Numer. Anal., 34 (1997), 1207. doi: 10.1137/S0036142995281693. Google Scholar

[6]

R. L. Devaney, "An Introduction to Chaotic Dynamical Systems," Second edition,, Addison-Wesley Studies in Nonlinearity, (1989). Google Scholar

[7]

A. Dhooge, W. Govaerts and Y. A. Kuznetsov, MATCONT: A MATLAB package for numerical bifurcation analysis of ODEs,, ACM Trans. Math. Software, 29 (2003), 141. doi: 10.1145/779359.779362. Google Scholar

[8]

L. Dieci, C. Elia and E. Van Vleck, Exponential dichotomy on the real line: SVD and QR methods,, J. Differential Equations, 248 (2010), 287. Google Scholar

[9]

S. Elaydi and R. J. Sacker, Global stability of periodic orbits of non-autonomous difference equations and population biology,, J. Differential Equations, 208 (2005), 258. Google Scholar

[10]

S. Elaydi and R. J. Sacker, Nonautonomous Beverton-Holt equations and the Cushing-Henson conjectures,, J. Difference Equ. Appl., 11 (2005), 337. Google Scholar

[11]

J. P. England, B. Krauskopf and H. M. Osinga, Bifurcations of stable sets in noninvertible planar maps,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 15 (2005), 891. doi: 10.1142/S0218127405012466. Google Scholar

[12]

D. Fundinger, Toward the calculation of higher-dimensional stable manifolds and stable sets for noninvertible and piecewise-smooth maps,, J. Nonlinear Sci., 18 (2008), 391. doi: 10.1007/s00332-007-9016-4. Google Scholar

[13]

R. K. Ghaziani, W. Govaerts, Y. A. Kuznetsov and H. G. E. Meijer, Numerical continuation of connecting orbits of maps in MATLAB,, J. Difference Equ. Appl., 15 (2009), 849. Google Scholar

[14]

J. K. Hale and H. Koçak, "Dynamics and Bifurcations," Texts in Applied Mathematics, 3,, Springer-Verlag, (1991). Google Scholar

[15]

M. Hénon, A two-dimensional mapping with a strange attractor,, Comm. Math. Phys., 50 (1976), 69. doi: 10.1007/BF01608556. Google Scholar

[16]

M. W. Hirsch, C. C. Pugh and M. Shub, "Invariant Manifolds,", Lecture Notes in Mathematics, (1977). Google Scholar

[17]

T. Hüls, Numerical computation of dichotomy rates and projectors in discrete time,, Discrete Contin. Dyn. Syst. Ser. B, 12 (2009), 109. doi: 10.3934/dcdsb.2009.12.109. Google Scholar

[18]

T. Hüls, Computing Sacker-Sell spectra in discrete time dynamical systems,, SIAM J. Numer. Anal., 48 (2010), 2043. doi: 10.1137/090754509. Google Scholar

[19]

T. Hüls, Homoclinic trajectories of non-autonomous maps,, J. Difference Equ. Appl., 17 (2011), 9. Google Scholar

[20]

Y. Kang and H. Smith, Global dynamics of a discrete two-species Lottery-Ricker competition model,, To appear in Journal of Biological Dynamics, (2011). Google Scholar

[21]

B. Krauskopf, H. M. Osinga, E. J. Doedel, M. E. Henderson, J. Guckenheimer, A. Vladimirsky, M. Dellnitz and O. Junge, A survey of methods for computing (un)stable manifolds of vector fields,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 15 (2005), 763. Google Scholar

[22]

C. Mira, "Chaotic Dynamics. From the One-Dimensional Endomorphism to the Two-Dimensional Diffeomorphism,", World Scientific Publishing Co., (1987). Google Scholar

[23]

K. J. Palmer, Exponential dichotomies, the shadowing lemma and transversal homoclinic points,, in, 1 (1988), 265. Google Scholar

[24]

G. Papaschinopoulos, Exponential dichotomy for almost periodic linear difference equations,, Ann. Soc. Sci. Bruxelles Sér. I, 102 (1988), 19. Google Scholar

[25]

C. Pötzsche and S. Siegmund, $C^m$ -smoothness of invariant fiber bundles,, Topol. Methods Nonlinear Anal., 24 (2004), 107. Google Scholar

[26]

S. Smale, Differentiable dynamical systems,, Bull. Amer. Math. Soc., 73 (1967), 747. Google Scholar

[27]

S. Wiggins, "Normally Hyperbolic Invariant Manifolds in Dynamical Systems," With the assistance of György Haller and Igor Mezić, Applied Mathematical Sciences, 105,, Springer-Verlag, (1994). Google Scholar

[1]

Alberto Cabada, J. Ángel Cid. Heteroclinic solutions for non-autonomous boundary value problems with singular $\Phi$-Laplacian operators. Conference Publications, 2009, 2009 (Special) : 118-122. doi: 10.3934/proc.2009.2009.118

[2]

Michael Dellnitz, Christian Horenkamp. The efficient approximation of coherent pairs in non-autonomous dynamical systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (9) : 3029-3042. doi: 10.3934/dcds.2012.32.3029

[3]

Barbara Bianconi, Francesca Papalini. Non-autonomous boundary value problems on the real line. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 759-776. doi: 10.3934/dcds.2006.15.759

[4]

Alexandre N. Carvalho, José A. Langa, James C. Robinson. Non-autonomous dynamical systems. Discrete & Continuous Dynamical Systems - B, 2015, 20 (3) : 703-747. doi: 10.3934/dcdsb.2015.20.703

[5]

Noriaki Yamazaki. Global attractors for non-autonomous multivalued dynamical systems associated with double obstacle problems. Conference Publications, 2003, 2003 (Special) : 935-944. doi: 10.3934/proc.2003.2003.935

[6]

Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087

[7]

Grzegorz Łukaszewicz, James C. Robinson. Invariant measures for non-autonomous dissipative dynamical systems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4211-4222. doi: 10.3934/dcds.2014.34.4211

[8]

Michael Zgurovsky, Mark Gluzman, Nataliia Gorban, Pavlo Kasyanov, Liliia Paliichuk, Olha Khomenko. Uniform global attractors for non-autonomous dissipative dynamical systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 2053-2065. doi: 10.3934/dcdsb.2017120

[9]

Tomás Caraballo, David Cheban. On the structure of the global attractor for non-autonomous dynamical systems with weak convergence. Communications on Pure & Applied Analysis, 2012, 11 (2) : 809-828. doi: 10.3934/cpaa.2012.11.809

[10]

David Cheban, Cristiana Mammana. Continuous dependence of attractors on parameters of non-autonomous dynamical systems and infinite iterated function systems. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 499-515. doi: 10.3934/dcds.2007.18.499

[11]

Lu Yang, Meihua Yang, Peter E. Kloeden. Pullback attractors for non-autonomous quasi-linear parabolic equations with dynamical boundary conditions. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2635-2651. doi: 10.3934/dcdsb.2012.17.2635

[12]

Wen Tan. The regularity of pullback attractor for a non-autonomous p-Laplacian equation with dynamical boundary condition. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 529-546. doi: 10.3934/dcdsb.2018194

[13]

Mikhail B. Sevryuk. Invariant tori in quasi-periodic non-autonomous dynamical systems via Herman's method. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 569-595. doi: 10.3934/dcds.2007.18.569

[14]

Tomás Caraballo, David Cheban. On the structure of the global attractor for infinite-dimensional non-autonomous dynamical systems with weak convergence. Communications on Pure & Applied Analysis, 2013, 12 (1) : 281-302. doi: 10.3934/cpaa.2013.12.281

[15]

Bixiang Wang. Multivalued non-autonomous random dynamical systems for wave equations without uniqueness. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 2011-2051. doi: 10.3934/dcdsb.2017119

[16]

Xiaolin Jia, Caidi Zhao, Juan Cao. Uniform attractor of the non-autonomous discrete Selkov model. Discrete & Continuous Dynamical Systems - A, 2014, 34 (1) : 229-248. doi: 10.3934/dcds.2014.34.229

[17]

Mei Li, Hongjun Gao, Bingjun Wang. Analysis of a non-autonomous mutualism model driven by Levy jumps. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1189-1202. doi: 10.3934/dcdsb.2016.21.1189

[18]

Rodrigo Samprogna, Tomás Caraballo. Pullback attractor for a dynamic boundary non-autonomous problem with Infinite Delay. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 509-523. doi: 10.3934/dcdsb.2017195

[19]

Alexandre Nolasco de Carvalho, Marcelo J. D. Nascimento. Singularly non-autonomous semilinear parabolic problems with critical exponents. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 449-471. doi: 10.3934/dcdss.2009.2.449

[20]

Philip Korman. Infinitely many solutions and Morse index for non-autonomous elliptic problems. Communications on Pure & Applied Analysis, 2020, 19 (1) : 31-46. doi: 10.3934/cpaa.2020003

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]