March  2012, 17(2): 553-574. doi: 10.3934/dcdsb.2012.17.553

Adhesive flexible material structures

1. 

Dipartimento di Matematica Politecnico di Bari, via Re David 200, 70125 Bari, Italy

2. 

Dipartimento di Ingegneria della Produzione Termoenergetica e Modelli Matematici, Università di Genova, Piazzale Kennedy, Fiera del Mare, Padiglione D, 16129 Genova, Italy

3. 

Dipartimento di Matematica "Francesco Brioschi", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy

Received  November 2010 Revised  June 2011 Published  December 2011

We study variational problems modeling the adhesion interaction with a rigid substrate for elastic strings and rods. We produce conditions characterizing bonded and detached states as well as optimality properties with respect to loading and geometry. We show Euler equations for minimizers of the total energy outside self-contact and secondary contact points with the substrate.
Citation: Francesco Maddalena, Danilo Percivale, Franco Tomarelli. Adhesive flexible material structures. Discrete & Continuous Dynamical Systems - B, 2012, 17 (2) : 553-574. doi: 10.3934/dcdsb.2012.17.553
References:
[1]

S. Antman, "Nonlinear Problems of Elasticity,", Second Edition, 107 (2005). Google Scholar

[2]

B. Aksak, M. P. Murphy and M. Sitti, Adhesion of biologically inspired vertical and angled polymer microfiber arrays,, Langmuir, 23 (2007), 3322. doi: 10.1021/la062697t. Google Scholar

[3]

K. T. Andrews, L. Chapman, J. R. Fernández, M. Fisackerly, M. Shillor, L. Vanerian and T. VanHouten, A membrane in adhesive contact,, SIAM J. Appl. Math., 64 (2003), 152. doi: 10.1137/S0036139902406206. Google Scholar

[4]

G. Bellettini and L. Mugnai, Characterization and representation of the lower semicontinuous envelope of the elastica functional,, Ann. Inst. Poincaré Anal. Non Lin., 21 (2004), 839. doi: 10.1016/j.anihpc.2004.01.001. Google Scholar

[5]

R. Burridge and J. B. Keller, Peeling, slipping and cracking--Some one dimensional free boundaries problems in mechanics,, SIAM Review, 20 (1978), 31. doi: 10.1137/1020003. Google Scholar

[6]

R. Courant and H. Robbins, "What Is Mathematics? An Elementary Approach to Ideas and Methods,", Oxford Univ. Press, (1979). Google Scholar

[7]

G. dal Maso, A. DeSimone and F. Tomarelli, eds., "Variational Problems in Materials Science,", Proceedings of the International Conference held in Trieste, 68 (2004), 6. Google Scholar

[8]

A. A. Evans and E. Lauga, Adhesion transition of flexible sheets,, Physical Review Letters, 79 (2009). Google Scholar

[9]

M. Frémond, Contact with adhesion, in, Topic in Nonsmooth Mechanics, (1988), 157. Google Scholar

[10]

A. Ghatak, L. Mahadevan, J. Y. Chung, M. K. Chaudhury and V. Shenoy, Peeling from a biomimetically patterned thin elastic film,, Proc. Royal Soc. London A, 460 (2004), 2725. doi: 10.1098/rspa.2004.1313. Google Scholar

[11]

O. Gonzalez, J. H. Maddocks, F. Schuricht and H. von der Mosel, Global curvature and self-contact of nonlinearly elastic curves and rods,, Calc. Var. Partial Differential Equations, 14 (2002), 29. Google Scholar

[12]

W. Han, K. L. Kuttler, M. Shillor and M. Sofonea, Elastic beam in adhesive contact, Int. J. Solids, Structures, 39 (2002), 1145. doi: 10.1016/S0020-7683(01)00250-5. Google Scholar

[13]

N. Israelachvili, "Intramolecular and Surface Forces,", Academic Press, (1992). Google Scholar

[14]

K. L. Johnson, Adhesion and friction between a smooth elastic spherical asperity and a smooth surface,, Proc. Royal Soc. London A, 453 (1997), 163. doi: 10.1098/rspa.1997.0010. Google Scholar

[15]

K. Kendall, "Molecular Adhesion and its Applications,", Kluwer Academic/Plenum, (2001). Google Scholar

[16]

J. Lee, C. Majidi, B. Schubert and R. Fearing, Sliding-induced adhesion of stiff polymer microfiber arrays. I. Macroscale behavior,, J. R. Soc. Interface, 5 (2008), 835. doi: 10.1098/rsif.2007.1308. Google Scholar

[17]

F. Maddalena and D. Percivale, Variational models for peeling problems,, Int. Free Boundaries, 10 (2008), 503. doi: 10.4171/IFB/199. Google Scholar

[18]

F. Maddalena, D. Percivale, G. Puglisi and L. Truskinowsky, Mechanics of reversible unzipping,, Continuum Mech. Thermodyn., 21 (2009), 251. doi: 10.1007/s00161-009-0108-2. Google Scholar

[19]

F. Maddalena, D. Percivale and G. Puglisi, Energy minimizing states in adhesion problems for elastic rods,, Appl. Mathematical Sciences, 4 (2010), 3749. Google Scholar

[20]

F. Maddalena, D. Percivale and F. Tomarelli, Scaling deduction of curvature elastic energies,, to appear., (). Google Scholar

[21]

F. Maddalena, D. Percivale and F. Tomarelli, Elastic structures in adhesion interaction,, to appear in Proc., (2010). Google Scholar

[22]

C. Majidi, On formulating an adhesion problem using Euler's elastica,, Mechanics Research Communications, 34 (2007), 85. doi: 10.1016/j.mechrescom.2006.06.007. Google Scholar

[23]

C. Majidi, Shear adhesion between an elastica and a rigid flat surface,, Mechanics Research Communications, 36 (2009), 369. doi: 10.1016/j.mechrescom.2008.10.010. Google Scholar

[24]

X. Oyharcabal and T. Frisch, Peeling off an elastica from a smooth atractive substrate,, Physical Review E, 71 (2005), 036611. doi: 10.1103/PhysRevE.71.036611. Google Scholar

[25]

D. Percivale and F. Tomarelli, Scaled Korn-Poincaré inequality in BD and a model of elastic plastic cantilever,, Asymptotic Analysis, 23 (2000), 291. Google Scholar

[26]

D. Percivale and F. Tomarelli, From special bounded deformation to special bounded Hessian: The elastic-plastic beam,, Math. Models Methods Appl. Sci., 15 (2005), 1009. doi: 10.1142/S0218202505000650. Google Scholar

[27]

D. Percivale and F. Tomarelli, A variational principle for plastic hinges in a beam,, Math. Models Methods Appl. Sci., 19 (2009), 2263. doi: 10.1142/S021820250900411X. Google Scholar

[28]

P. Podio-Guidugli, Peeling tapes,, in, 11 (2005), 253. doi: 10.1007/0-387-26261-X_25. Google Scholar

[29]

M. C. Strus, L. Zalamea, A. Raman, R. B. Pipes, C. V. Nguyen and E. A. Stach, Peeling force spectroscopy: Exposing the adhesive nanomechanics of one-dimensional nanostructures,, NANO LETTERS, 8 (2008), 544. doi: 10.1021/nl0728118. Google Scholar

[30]

M. Shillor, M. Sofonea and J. J. Telega, "Models and Analysis of Quasistatic Contact,", Lecture Notes in Physics, 655 (2004). Google Scholar

[31]

M. Sofonea, W. Han and M. Shillor, "Analysis and Approximations of Contact Problems with Adhesion or Damage,", Pure and Applied Mathematics (Boca Raton), 276 (2006). Google Scholar

[32]

Y.-P. Zhao, L. S. Wang and T. X. Yu, Mechanics of adhesion in MEMS-a review,, J. Adhesion Sci.Technol., 17 (2003), 519. doi: 10.1163/15685610360554393. Google Scholar

show all references

References:
[1]

S. Antman, "Nonlinear Problems of Elasticity,", Second Edition, 107 (2005). Google Scholar

[2]

B. Aksak, M. P. Murphy and M. Sitti, Adhesion of biologically inspired vertical and angled polymer microfiber arrays,, Langmuir, 23 (2007), 3322. doi: 10.1021/la062697t. Google Scholar

[3]

K. T. Andrews, L. Chapman, J. R. Fernández, M. Fisackerly, M. Shillor, L. Vanerian and T. VanHouten, A membrane in adhesive contact,, SIAM J. Appl. Math., 64 (2003), 152. doi: 10.1137/S0036139902406206. Google Scholar

[4]

G. Bellettini and L. Mugnai, Characterization and representation of the lower semicontinuous envelope of the elastica functional,, Ann. Inst. Poincaré Anal. Non Lin., 21 (2004), 839. doi: 10.1016/j.anihpc.2004.01.001. Google Scholar

[5]

R. Burridge and J. B. Keller, Peeling, slipping and cracking--Some one dimensional free boundaries problems in mechanics,, SIAM Review, 20 (1978), 31. doi: 10.1137/1020003. Google Scholar

[6]

R. Courant and H. Robbins, "What Is Mathematics? An Elementary Approach to Ideas and Methods,", Oxford Univ. Press, (1979). Google Scholar

[7]

G. dal Maso, A. DeSimone and F. Tomarelli, eds., "Variational Problems in Materials Science,", Proceedings of the International Conference held in Trieste, 68 (2004), 6. Google Scholar

[8]

A. A. Evans and E. Lauga, Adhesion transition of flexible sheets,, Physical Review Letters, 79 (2009). Google Scholar

[9]

M. Frémond, Contact with adhesion, in, Topic in Nonsmooth Mechanics, (1988), 157. Google Scholar

[10]

A. Ghatak, L. Mahadevan, J. Y. Chung, M. K. Chaudhury and V. Shenoy, Peeling from a biomimetically patterned thin elastic film,, Proc. Royal Soc. London A, 460 (2004), 2725. doi: 10.1098/rspa.2004.1313. Google Scholar

[11]

O. Gonzalez, J. H. Maddocks, F. Schuricht and H. von der Mosel, Global curvature and self-contact of nonlinearly elastic curves and rods,, Calc. Var. Partial Differential Equations, 14 (2002), 29. Google Scholar

[12]

W. Han, K. L. Kuttler, M. Shillor and M. Sofonea, Elastic beam in adhesive contact, Int. J. Solids, Structures, 39 (2002), 1145. doi: 10.1016/S0020-7683(01)00250-5. Google Scholar

[13]

N. Israelachvili, "Intramolecular and Surface Forces,", Academic Press, (1992). Google Scholar

[14]

K. L. Johnson, Adhesion and friction between a smooth elastic spherical asperity and a smooth surface,, Proc. Royal Soc. London A, 453 (1997), 163. doi: 10.1098/rspa.1997.0010. Google Scholar

[15]

K. Kendall, "Molecular Adhesion and its Applications,", Kluwer Academic/Plenum, (2001). Google Scholar

[16]

J. Lee, C. Majidi, B. Schubert and R. Fearing, Sliding-induced adhesion of stiff polymer microfiber arrays. I. Macroscale behavior,, J. R. Soc. Interface, 5 (2008), 835. doi: 10.1098/rsif.2007.1308. Google Scholar

[17]

F. Maddalena and D. Percivale, Variational models for peeling problems,, Int. Free Boundaries, 10 (2008), 503. doi: 10.4171/IFB/199. Google Scholar

[18]

F. Maddalena, D. Percivale, G. Puglisi and L. Truskinowsky, Mechanics of reversible unzipping,, Continuum Mech. Thermodyn., 21 (2009), 251. doi: 10.1007/s00161-009-0108-2. Google Scholar

[19]

F. Maddalena, D. Percivale and G. Puglisi, Energy minimizing states in adhesion problems for elastic rods,, Appl. Mathematical Sciences, 4 (2010), 3749. Google Scholar

[20]

F. Maddalena, D. Percivale and F. Tomarelli, Scaling deduction of curvature elastic energies,, to appear., (). Google Scholar

[21]

F. Maddalena, D. Percivale and F. Tomarelli, Elastic structures in adhesion interaction,, to appear in Proc., (2010). Google Scholar

[22]

C. Majidi, On formulating an adhesion problem using Euler's elastica,, Mechanics Research Communications, 34 (2007), 85. doi: 10.1016/j.mechrescom.2006.06.007. Google Scholar

[23]

C. Majidi, Shear adhesion between an elastica and a rigid flat surface,, Mechanics Research Communications, 36 (2009), 369. doi: 10.1016/j.mechrescom.2008.10.010. Google Scholar

[24]

X. Oyharcabal and T. Frisch, Peeling off an elastica from a smooth atractive substrate,, Physical Review E, 71 (2005), 036611. doi: 10.1103/PhysRevE.71.036611. Google Scholar

[25]

D. Percivale and F. Tomarelli, Scaled Korn-Poincaré inequality in BD and a model of elastic plastic cantilever,, Asymptotic Analysis, 23 (2000), 291. Google Scholar

[26]

D. Percivale and F. Tomarelli, From special bounded deformation to special bounded Hessian: The elastic-plastic beam,, Math. Models Methods Appl. Sci., 15 (2005), 1009. doi: 10.1142/S0218202505000650. Google Scholar

[27]

D. Percivale and F. Tomarelli, A variational principle for plastic hinges in a beam,, Math. Models Methods Appl. Sci., 19 (2009), 2263. doi: 10.1142/S021820250900411X. Google Scholar

[28]

P. Podio-Guidugli, Peeling tapes,, in, 11 (2005), 253. doi: 10.1007/0-387-26261-X_25. Google Scholar

[29]

M. C. Strus, L. Zalamea, A. Raman, R. B. Pipes, C. V. Nguyen and E. A. Stach, Peeling force spectroscopy: Exposing the adhesive nanomechanics of one-dimensional nanostructures,, NANO LETTERS, 8 (2008), 544. doi: 10.1021/nl0728118. Google Scholar

[30]

M. Shillor, M. Sofonea and J. J. Telega, "Models and Analysis of Quasistatic Contact,", Lecture Notes in Physics, 655 (2004). Google Scholar

[31]

M. Sofonea, W. Han and M. Shillor, "Analysis and Approximations of Contact Problems with Adhesion or Damage,", Pure and Applied Mathematics (Boca Raton), 276 (2006). Google Scholar

[32]

Y.-P. Zhao, L. S. Wang and T. X. Yu, Mechanics of adhesion in MEMS-a review,, J. Adhesion Sci.Technol., 17 (2003), 519. doi: 10.1163/15685610360554393. Google Scholar

[1]

Felix Sadyrbaev. Nonlinear boundary value problems of the calculus of variations. Conference Publications, 2003, 2003 (Special) : 760-770. doi: 10.3934/proc.2003.2003.760

[2]

Bernard Dacorogna, Giovanni Pisante, Ana Margarida Ribeiro. On non quasiconvex problems of the calculus of variations. Discrete & Continuous Dynamical Systems - A, 2005, 13 (4) : 961-983. doi: 10.3934/dcds.2005.13.961

[3]

Daniel Faraco, Jan Kristensen. Compactness versus regularity in the calculus of variations. Discrete & Continuous Dynamical Systems - B, 2012, 17 (2) : 473-485. doi: 10.3934/dcdsb.2012.17.473

[4]

Agnieszka B. Malinowska, Delfim F. M. Torres. Euler-Lagrange equations for composition functionals in calculus of variations on time scales. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 577-593. doi: 10.3934/dcds.2011.29.577

[5]

Delfim F. M. Torres. Proper extensions of Noether's symmetry theorem for nonsmooth extremals of the calculus of variations. Communications on Pure & Applied Analysis, 2004, 3 (3) : 491-500. doi: 10.3934/cpaa.2004.3.491

[6]

Nuno R. O. Bastos, Rui A. C. Ferreira, Delfim F. M. Torres. Necessary optimality conditions for fractional difference problems of the calculus of variations. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 417-437. doi: 10.3934/dcds.2011.29.417

[7]

Nikos Katzourakis. Nonuniqueness in vector-valued calculus of variations in $L^\infty$ and some Linear elliptic systems. Communications on Pure & Applied Analysis, 2015, 14 (1) : 313-327. doi: 10.3934/cpaa.2015.14.313

[8]

Gisella Croce, Nikos Katzourakis, Giovanni Pisante. $\mathcal{D}$-solutions to the system of vectorial Calculus of Variations in $L^∞$ via the singular value problem. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6165-6181. doi: 10.3934/dcds.2017266

[9]

Ioan Bucataru, Matias F. Dahl. Semi-basic 1-forms and Helmholtz conditions for the inverse problem of the calculus of variations. Journal of Geometric Mechanics, 2009, 1 (2) : 159-180. doi: 10.3934/jgm.2009.1.159

[10]

Hans Josef Pesch. Carathéodory's royal road of the calculus of variations: Missed exits to the maximum principle of optimal control theory. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 161-173. doi: 10.3934/naco.2013.3.161

[11]

Ivar Ekeland. From Frank Ramsey to René Thom: A classical problem in the calculus of variations leading to an implicit differential equation. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 1101-1119. doi: 10.3934/dcds.2010.28.1101

[12]

Nikos Katzourakis. Corrigendum to the paper: Nonuniqueness in Vector-Valued Calculus of Variations in $ L^\infty $ and some Linear Elliptic Systems. Communications on Pure & Applied Analysis, 2019, 18 (4) : 2197-2198. doi: 10.3934/cpaa.2019098

[13]

Annie Raoult. Symmetry groups in nonlinear elasticity: an exercise in vintage mathematics. Communications on Pure & Applied Analysis, 2009, 8 (1) : 435-456. doi: 10.3934/cpaa.2009.8.435

[14]

Irena Lasiecka, W. Heyman. Asymptotic behavior of solutions in nonlinear dynamic elasticity. Discrete & Continuous Dynamical Systems - A, 1995, 1 (2) : 237-252. doi: 10.3934/dcds.1995.1.237

[15]

Lorena Bociu, Jean-Paul Zolésio. Existence for the linearization of a steady state fluid/nonlinear elasticity interaction. Conference Publications, 2011, 2011 (Special) : 184-197. doi: 10.3934/proc.2011.2011.184

[16]

Engu Satynarayana, Manas R. Sahoo, Manasa M. Higher order asymptotic for Burgers equation and Adhesion model. Communications on Pure & Applied Analysis, 2017, 16 (1) : 253-272. doi: 10.3934/cpaa.2017012

[17]

Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065

[18]

Julian Braun, Bernd Schmidt. On the passage from atomistic systems to nonlinear elasticity theory for general multi-body potentials with p-growth. Networks & Heterogeneous Media, 2013, 8 (4) : 879-912. doi: 10.3934/nhm.2013.8.879

[19]

Frank Sottile. The special Schubert calculus is real. Electronic Research Announcements, 1999, 5: 35-39.

[20]

Fabrizio Colombo, Graziano Gentili, Irene Sabadini and Daniele C. Struppa. A functional calculus in a noncommutative setting. Electronic Research Announcements, 2007, 14: 60-68. doi: 10.3934/era.2007.14.60

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (3)

[Back to Top]