November  2012, 17(8): 2653-2669. doi: 10.3934/dcdsb.2012.17.2653

Exact travelling wave solutions of three-species competition--diffusion systems

1. 

Department of Mathematics, National Taiwan University, and National Center for Theoretical Sciences (Taipei Office), No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan

2. 

Department of Mathematics, National Taiwan University, and National Center for Theoretical Sciences (Taipei Office), No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan

3. 

Meiji Institute for Advanced Study of Mathematical Sciences, Meiji University, 1-1-1 Higashimita, Tamaku, Kawasaki 214-8571, Japan

4. 

Meiji Institute for Advanced Study of Mathematical Sciences, and Graduate School of Advanced Mathematical Sciences, Meiji University, 1-1-1 Higashimita, Tamaku, Kawasaki 214-8571, Japan

Received  March 2011 Revised  September 2011 Published  July 2012

We consider the problem where $W$ invades the $(U,V)$ system in the three species Lotka-Volterra competition-diffusion model. Numerical simulation indicates that the presence of $W$ can dramatically change the competitive interaction between $U$ and $V$ in some parameter range if the invading $W$ is not too small. We also construct exact travelling wave solutions with non-trivial three components and track the bifurcation branches of these solutions by AUTO.
Citation: Chiun-Chuan Chen, Li-Chang Hung, Masayasu Mimura, Daishin Ueyama. Exact travelling wave solutions of three-species competition--diffusion systems. Discrete & Continuous Dynamical Systems - B, 2012, 17 (8) : 2653-2669. doi: 10.3934/dcdsb.2012.17.2653
References:
[1]

E. J. Doedel, B. E. Oldeman, A. R. Champneys, F. Dercole, T. F. Fairgrieve, Y. Kuznetsov, R. C. Paffenroth, B. Sandstede, X. J. Wang and C. H. Zhang, "AUTO-07p: Continuation and Bifurcation Software for Ordinary Differential Equations," Concordia Univ.,, Version 0.7, (2010). Google Scholar

[2]

S.-I. Ei, R. Ikota and M. Mimura, Segregating partition problem in competition-diffusion systems,, J. Interfaces and Free Boundaries, 1 (1999), 57. Google Scholar

[3]

M. W. Hirsch, Stability and convergence in strongly monotone dynamical systems,, J. Reine Angew. Math., 383 (1988), 1. Google Scholar

[4]

J. Hofbauer and K. Sigmund, "Evolutionary Games and Population Dynamics,", Cambridge University Press, (1998). Google Scholar

[5]

, H. Ikeda,, Unpublished., (). Google Scholar

[6]

Y. Kannon, Traveling waves in systems of two competing species,, Sūgaku, 49 (1997), 379. Google Scholar

[7]

K. Kishimoto and H. F. Weinberger, The spatial homogeneity of stable equilibria of some reaction-diffusion systems on convex domains,, J. Differential Equations, 58 (1985), 15. doi: 10.1016/0022-0396(85)90020-8. Google Scholar

[8]

M. Rodrigo and M. Mimura, Exact solutions of a competition-diffusion system,, Hiroshima Math. J., 30 (2000), 257. Google Scholar

[9]

M. Rodrigo and M. Mimura, Exact solutions of reaction-diffusion systems and nonlinear wave equations,, Japan J. Indust. Appl. Math., 18 (2001), 657. doi: 10.1007/BF03167410. Google Scholar

[10]

S. Wolfram, "Mathematica: A System for Doing Mathematics by Computer,", Addison-Wesley Longman Publishing Co., (1988). Google Scholar

[11]

M. L. Zeeman, Hopf bifurcations in competitive three-dimensional Lotka-Volterra systems,, Dynam. Stability Systems, 8 (1993), 189. Google Scholar

show all references

References:
[1]

E. J. Doedel, B. E. Oldeman, A. R. Champneys, F. Dercole, T. F. Fairgrieve, Y. Kuznetsov, R. C. Paffenroth, B. Sandstede, X. J. Wang and C. H. Zhang, "AUTO-07p: Continuation and Bifurcation Software for Ordinary Differential Equations," Concordia Univ.,, Version 0.7, (2010). Google Scholar

[2]

S.-I. Ei, R. Ikota and M. Mimura, Segregating partition problem in competition-diffusion systems,, J. Interfaces and Free Boundaries, 1 (1999), 57. Google Scholar

[3]

M. W. Hirsch, Stability and convergence in strongly monotone dynamical systems,, J. Reine Angew. Math., 383 (1988), 1. Google Scholar

[4]

J. Hofbauer and K. Sigmund, "Evolutionary Games and Population Dynamics,", Cambridge University Press, (1998). Google Scholar

[5]

, H. Ikeda,, Unpublished., (). Google Scholar

[6]

Y. Kannon, Traveling waves in systems of two competing species,, Sūgaku, 49 (1997), 379. Google Scholar

[7]

K. Kishimoto and H. F. Weinberger, The spatial homogeneity of stable equilibria of some reaction-diffusion systems on convex domains,, J. Differential Equations, 58 (1985), 15. doi: 10.1016/0022-0396(85)90020-8. Google Scholar

[8]

M. Rodrigo and M. Mimura, Exact solutions of a competition-diffusion system,, Hiroshima Math. J., 30 (2000), 257. Google Scholar

[9]

M. Rodrigo and M. Mimura, Exact solutions of reaction-diffusion systems and nonlinear wave equations,, Japan J. Indust. Appl. Math., 18 (2001), 657. doi: 10.1007/BF03167410. Google Scholar

[10]

S. Wolfram, "Mathematica: A System for Doing Mathematics by Computer,", Addison-Wesley Longman Publishing Co., (1988). Google Scholar

[11]

M. L. Zeeman, Hopf bifurcations in competitive three-dimensional Lotka-Volterra systems,, Dynam. Stability Systems, 8 (1993), 189. Google Scholar

[1]

Daozhou Gao, Xing Liang. A competition-diffusion system with a refuge. Discrete & Continuous Dynamical Systems - B, 2007, 8 (2) : 435-454. doi: 10.3934/dcdsb.2007.8.435

[2]

Jong-Shenq Guo, Ying-Chih Lin. The sign of the wave speed for the Lotka-Volterra competition-diffusion system. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2083-2090. doi: 10.3934/cpaa.2013.12.2083

[3]

Nahla Abdellatif, Radhouane Fekih-Salem, Tewfik Sari. Competition for a single resource and coexistence of several species in the chemostat. Mathematical Biosciences & Engineering, 2016, 13 (4) : 631-652. doi: 10.3934/mbe.2016012

[4]

Yuan Lou, Daniel Munther. Dynamics of a three species competition model. Discrete & Continuous Dynamical Systems - A, 2012, 32 (9) : 3099-3131. doi: 10.3934/dcds.2012.32.3099

[5]

Xiaojie Hou, Yi Li. Traveling waves in a three species competition-cooperation system. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1103-1120. doi: 10.3934/cpaa.2017053

[6]

M. Guedda, R. Kersner, M. Klincsik, E. Logak. Exact wavefronts and periodic patterns in a competition system with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1589-1600. doi: 10.3934/dcdsb.2014.19.1589

[7]

Yukio Kan-On. Structure on the set of radially symmetric positive stationary solutions for a competition-diffusion system. Conference Publications, 2013, 2013 (special) : 427-436. doi: 10.3934/proc.2013.2013.427

[8]

E. C.M. Crooks, E. N. Dancer, Danielle Hilhorst. Fast reaction limit and long time behavior for a competition-diffusion system with Dirichlet boundary conditions. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 39-44. doi: 10.3934/dcdsb.2007.8.39

[9]

Xiongxiong Bao, Wan-Tong Li, Zhi-Cheng Wang. Uniqueness and stability of time-periodic pyramidal fronts for a periodic competition-diffusion system. Communications on Pure & Applied Analysis, 2020, 19 (1) : 253-277. doi: 10.3934/cpaa.2020014

[10]

Hua Nie, Sze-Bi Hsu, Jianhua Wu. Coexistence solutions of a competition model with two species in a water column. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2691-2714. doi: 10.3934/dcdsb.2015.20.2691

[11]

Wei-Ming Ni, Masaharu Taniguchi. Traveling fronts of pyramidal shapes in competition-diffusion systems. Networks & Heterogeneous Media, 2013, 8 (1) : 379-395. doi: 10.3934/nhm.2013.8.379

[12]

Benlong Xu, Hongyan Jiang. Invasion and coexistence of competition-diffusion-advection system with heterogeneous vs homogeneous resources. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4255-4266. doi: 10.3934/dcdsb.2018136

[13]

Guo-Bao Zhang, Fang-Di Dong, Wan-Tong Li. Uniqueness and stability of traveling waves for a three-species competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1511-1541. doi: 10.3934/dcdsb.2018218

[14]

Bo Duan, Zhengce Zhang. A two-species weak competition system of reaction-diffusion-advection with double free boundaries. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 801-829. doi: 10.3934/dcdsb.2018208

[15]

Jong-Shenq Guo, Chang-Hong Wu. Recent developments on wave propagation in 2-species competition systems. Discrete & Continuous Dynamical Systems - B, 2012, 17 (8) : 2713-2724. doi: 10.3934/dcdsb.2012.17.2713

[16]

Lia Bronsard, Seong-A Shim. Long-time behavior for competition-diffusion systems via viscosity comparison. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 561-581. doi: 10.3934/dcds.2005.13.561

[17]

Shuling Yan, Shangjiang Guo. Dynamics of a Lotka-Volterra competition-diffusion model with stage structure and spatial heterogeneity. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1559-1579. doi: 10.3934/dcdsb.2018059

[18]

Zhi-Cheng Wang, Hui-Ling Niu, Shigui Ruan. On the existence of axisymmetric traveling fronts in Lotka-Volterra competition-diffusion systems in ℝ3. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 1111-1144. doi: 10.3934/dcdsb.2017055

[19]

Danielle Hilhorst, Masato Iida, Masayasu Mimura, Hirokazu Ninomiya. Relative compactness in $L^p$ of solutions of some 2m components competition-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 233-244. doi: 10.3934/dcds.2008.21.233

[20]

Yuanshi Wang, Hong Wu. Transition of interaction outcomes in a facilitation-competition system of two species. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1463-1475. doi: 10.3934/mbe.2017076

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (18)
  • HTML views (0)
  • Cited by (9)

[Back to Top]