September  2012, 17(6): 2267-2280. doi: 10.3934/dcdsb.2012.17.2267

On sufficient conditions for a linearly determinate spreading speed

1. 

School of Mathematics, University of Minnesota, 206 Church Street, Minneapolis, MN 55455, United States

Received  June 2011 Revised  December 2011 Published  May 2012

It is shown how to construct criteria of the form $f(u)\le f'(0)K(u)$ which guarantee that the spreading speed $c^*$ of a reaction-diffusion equation with the reaction term $f(u)$ is linearly determinate in the sense that $c^*=2\sqrt{f'(0)}$. Some of these criteria improve the classical condition $f(u)\le f'(0)u$, and permit the presence of sharp Allee effects. Inequalities which guarantee the failure of linear determinacy are also presented.
Citation: Hans Weinberger. On sufficient conditions for a linearly determinate spreading speed. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 2267-2280. doi: 10.3934/dcdsb.2012.17.2267
References:
[1]

W. C. Allee, "Animal Aggregations. A Study in General Sociology,'', U. of Chicago Press, (1931).

[2]

B. H. Gilding and R. Kersner, "Travelling Waves in Nonlinear Diffusion-Convection Reaction,", Progress in Nonlinear Differential Equations and their Applications, 60 (2004).

[3]

K. P. Hadeler and F. Rothe, Traveling fronts in nonlinear diffusion equations,, J. Math. Biol., 2 (1975), 251.

[4]

A. N. Kolmogorov, I. G. Petrovski and N. S. Piscounov, Étude de l'équation de la diffusion avec croissance de la quantité de matiére et son application á un probléme biologique,, Bull. Univ. d'État á Moscou Ser. Intern., 1 (1937), 1.

[5]

M.-H. Wang and M. Kot, Speeds of invasion in a model with strong or weak Allee effects,, Mathematical Biosciences, 171 (2001), 83. doi: 10.1016/S0025-5564(01)00048-7.

show all references

References:
[1]

W. C. Allee, "Animal Aggregations. A Study in General Sociology,'', U. of Chicago Press, (1931).

[2]

B. H. Gilding and R. Kersner, "Travelling Waves in Nonlinear Diffusion-Convection Reaction,", Progress in Nonlinear Differential Equations and their Applications, 60 (2004).

[3]

K. P. Hadeler and F. Rothe, Traveling fronts in nonlinear diffusion equations,, J. Math. Biol., 2 (1975), 251.

[4]

A. N. Kolmogorov, I. G. Petrovski and N. S. Piscounov, Étude de l'équation de la diffusion avec croissance de la quantité de matiére et son application á un probléme biologique,, Bull. Univ. d'État á Moscou Ser. Intern., 1 (1937), 1.

[5]

M.-H. Wang and M. Kot, Speeds of invasion in a model with strong or weak Allee effects,, Mathematical Biosciences, 171 (2001), 83. doi: 10.1016/S0025-5564(01)00048-7.

[1]

Manjun Ma, Xiao-Qiang Zhao. Monostable waves and spreading speed for a reaction-diffusion model with seasonal succession. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 591-606. doi: 10.3934/dcdsb.2016.21.591

[2]

Zhenguo Bai, Tingting Zhao. Spreading speed and traveling waves for a non-local delayed reaction-diffusion system without quasi-monotonicity. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4063-4085. doi: 10.3934/dcdsb.2018126

[3]

Juliette Bouhours, Grégroie Nadin. A variational approach to reaction-diffusion equations with forced speed in dimension 1. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 1843-1872. doi: 10.3934/dcds.2015.35.1843

[4]

Gregoire Nadin. How does the spreading speed associated with the Fisher-KPP equation depend on random stationary diffusion and reaction terms?. Discrete & Continuous Dynamical Systems - B, 2015, 20 (6) : 1785-1803. doi: 10.3934/dcdsb.2015.20.1785

[5]

Ching-Shan Chou, Yong-Tao Zhang, Rui Zhao, Qing Nie. Numerical methods for stiff reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2007, 7 (3) : 515-525. doi: 10.3934/dcdsb.2007.7.515

[6]

Laurent Desvillettes, Klemens Fellner. Entropy methods for reaction-diffusion systems. Conference Publications, 2007, 2007 (Special) : 304-312. doi: 10.3934/proc.2007.2007.304

[7]

A. Dall'Acqua. Positive solutions for a class of reaction-diffusion systems. Communications on Pure & Applied Analysis, 2003, 2 (1) : 65-76. doi: 10.3934/cpaa.2003.2.65

[8]

Bingtuan Li, William F. Fagan, Garrett Otto, Chunwei Wang. Spreading speeds and traveling wave solutions in a competitive reaction-diffusion model for species persistence in a stream. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3267-3281. doi: 10.3934/dcdsb.2014.19.3267

[9]

Hans F. Weinberger, Kohkichi Kawasaki, Nanako Shigesada. Spreading speeds for a partially cooperative 2-species reaction-diffusion model. Discrete & Continuous Dynamical Systems - A, 2009, 23 (3) : 1087-1098. doi: 10.3934/dcds.2009.23.1087

[10]

Henri Berestycki, Luca Rossi. Reaction-diffusion equations for population dynamics with forced speed I - The case of the whole space. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 41-67. doi: 10.3934/dcds.2008.21.41

[11]

Henri Berestycki, Luca Rossi. Reaction-diffusion equations for population dynamics with forced speed II - cylindrical-type domains. Discrete & Continuous Dynamical Systems - A, 2009, 25 (1) : 19-61. doi: 10.3934/dcds.2009.25.19

[12]

Yong Jung Kim, Wei-Ming Ni, Masaharu Taniguchi. Non-existence of localized travelling waves with non-zero speed in single reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3707-3718. doi: 10.3934/dcds.2013.33.3707

[13]

Dieter Bothe, Michel Pierre. The instantaneous limit for reaction-diffusion systems with a fast irreversible reaction. Discrete & Continuous Dynamical Systems - S, 2012, 5 (1) : 49-59. doi: 10.3934/dcdss.2012.5.49

[14]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[15]

C. van der Mee, Stella Vernier Piro. Travelling waves for solid-gas reaction-diffusion systems. Conference Publications, 2003, 2003 (Special) : 872-879. doi: 10.3934/proc.2003.2003.872

[16]

Shin-Ichiro Ei, Toshio Ishimoto. Effect of boundary conditions on the dynamics of a pulse solution for reaction-diffusion systems. Networks & Heterogeneous Media, 2013, 8 (1) : 191-209. doi: 10.3934/nhm.2013.8.191

[17]

Masaharu Taniguchi. Instability of planar traveling waves in bistable reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2003, 3 (1) : 21-44. doi: 10.3934/dcdsb.2003.3.21

[18]

Wei Feng, Weihua Ruan, Xin Lu. On existence of wavefront solutions in mixed monotone reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 815-836. doi: 10.3934/dcdsb.2016.21.815

[19]

Yuncheng You. Asymptotic dynamics of reversible cubic autocatalytic reaction-diffusion systems. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1415-1445. doi: 10.3934/cpaa.2011.10.1415

[20]

Rebecca McKay, Theodore Kolokolnikov, Paul Muir. Interface oscillations in reaction-diffusion systems above the Hopf bifurcation. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2523-2543. doi: 10.3934/dcdsb.2012.17.2523

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]