September  2012, 17(6): 1831-1840. doi: 10.3934/dcdsb.2012.17.1831

Optimal treated mosquito bed nets and insecticides for eradication of malaria in Missira

1. 

Department of Mathematics and Computer Science, Grambling State University, Grambling, LA 71245, United States

2. 

Department of Mathematics, Howard University, Washington, DC 20059

Received  May 2011 Revised  July 2011 Published  May 2012

We extend the deterministic mathematical malaria model framework of Dembele et al. and use it to study the impact of protecting humans from mosquito bites and mass killing of mosquito vectors on malaria incidence in Missira, a village in Mali. As a case study, we fit our model to Missira malaria incidence data. Using the fitted model, we compute the optimal proportion of protected human population from infected mosquito bites and optimal proportion of killed moquitoes that would lead to the eradication of malaria in Missira.
Citation: Bassidy Dembele, Abdul-Aziz Yakubu. Optimal treated mosquito bed nets and insecticides for eradication of malaria in Missira. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1831-1840. doi: 10.3934/dcdsb.2012.17.1831
References:
[1]

A. D. Allen and M. Cisse, Determination of the frequency and correlation between glucose 6-phosphate dehydrogenase deficiency and sickle cell anemia (HbS) in a west African village (Mali), a malaria endemic region,, Technical Report, (2010). Google Scholar

[2]

N. T. J. Bailey, "The Mathematical Theory of Epidemics,", Hafner Publishing Co., (1957). Google Scholar

[3]

A. Bekessey, L. Molineaux and J. Storey, Estimation of incidence and recovery rates of Plasmodium falciparum parasitaemia from longitudinal data,, Bull. World Health Organ, 54 (1976), 685. Google Scholar

[4]

P. Carnevale, J. Mouchet, M. Coosemans, J. Julvez, S. Manguin, R. D. Lenoble and S. Sircoulou, "Biodiversit du Paludisme dans le Monde,", John Libbey Eurotext, (2004). Google Scholar

[5]

D. Coulibaly, D. Diallo, M. Thera, A. Dicko, A. Guindo, A. Kone, Y. Cissoko, S. Coulibaly, A. Djimde, K. Lyke, O. Doumbo and C. Plowe, Impact of preseason treatment on incidence of falciparum malaria and parasite density at a site for testing malaria vaccines in Bandiagara, Mali,, Am. J. Trop. Med. Hyg., 67 (2002), 604. Google Scholar

[6]

R. Carter, K. N. Mendis and D. Roberts, Spatial targeting of interventions against malaria,, Bulletin of the World Health Organization, 78 (2000), 1401. Google Scholar

[7]

Centers for Disease Control and Prevention, Malaria., Availabe from: \url{http://www.cdc.gov/malaria}., (). Google Scholar

[8]

B. Dembele, A. Friedman and A.-A. Yakubu, Malaria model with periodic mosquito birth and death rates,, J. Biol. Dyn., 3 (2009), 430. Google Scholar

[9]

B. Dembele, A. Friedman and A.-A. Yakubu, Mathematical model for optimal use of sulfadoxine-pyrimethamine as a temporary malaria vaccine,, Bulletin of Mathematical Biology, 72 (2010), 914. doi: 10.1007/s11538-009-9476-9. Google Scholar

[10]

K. Dietz, Mathematical models for malaria in different ecological, zones,, Presented to the 7th International Biometric Conference, (1970). Google Scholar

[11]

K. Dietz, Mathematical models for transmission and control of malaria,, in, (1988), 1091. Google Scholar

[12]

A. N. Gideon, and W. S. Shu, A Mathematical Model for Endemic Malaria with Variable Human and Mosquito populations,, United Nations Educational Scientific and Cultural Organization and International Atomic Energy Agency, (1999). Google Scholar

[13]

N. J. Govella, F. O. Okumu and F. Killeen. Gerry, Insecticide-treated nets can reduce malaria transmission by mosquitoes which feed outdoors,, Am. J. Trop. Med. Hyg., 82 (2010), 415. doi: 10.4269/ajtmh.2010.09-0579. Google Scholar

[14]

N. C. Grassly and C. Fraser, Seasonal infectious disease epidemiology,, Proc. R. Soc. B, 273 (2006), 2541. doi: 10.1098/rspb.2006.3604. Google Scholar

[15]

W. O. Kermack and A. G. McKendrick, Contributions to the mathematical theory of epidemics ,, Proc. R. Soc. A, 115 (1927), 700. doi: 10.1098/rspa.1927.0118. Google Scholar

[16]

G. F. Killeen, A. Seyoum and B. G. J. Knols, Rationalizing historical successes of malaria control in Africa in terms of mosquito resource availability management,, Am. J. Trop. Med. Hyg., 71 (2004), 87. Google Scholar

[17]

A. J. Lokta, Contributions to the analysis of malaria epidemiology,, Am. J. Hyg., 3 (1923), 11. Google Scholar

[18]

G. Macdonald, The analysis of infection rates in diseases in which supperinfection occurs,, Trop. Dis. Bull., 47 (1950), 907. Google Scholar

[19]

E. Martini, "Berechnungen und Beobachtungen zur Epidemiologie und Bekam pfung der Malaria,", Gente, (1921). Google Scholar

[20]

F. E. McKenzie and H. W. Bossert, An integrated model of Plasmodium falciparum dynamics,, J. Theor. Biol., 232 (2005), 411. doi: 10.1016/j.jtbi.2004.08.021. Google Scholar

[21]

A. L. Menach, E. F. McKenzie, A. Flahault and D. L. Smith, The unexpected importance of mosquito oviposition behaviour for malaria: Non-productive larval habitats can be sources for malaria transmission,, Malaria Journal, (2005), 4. Google Scholar

[22]

National Institute of Allergy and Infectious Diseases, Malaria,, Publication No. 02-7139, (2002), 02. Google Scholar

[23]

T. J. Norman and M. A. Baley, "The Biomathematics of Malaria,", Oxford University Press, (1982). Google Scholar

[24]

R. Ross, "The Prevention of Malaria," 2nd edition,, With Addendum on the Theory of Happenings, (1911). Google Scholar

[25]

N. Sagoba, S. Doumbia, P. Vounatsou, I. Baber, M. Keita, M. Maiga, S. Toure, G. Dolo, T. Smith and J. M. C. Ribeiro, Monitoring of larval habitats and mosquito densities in the Sudan savanna of Mali: Implications of malaria vector control,, Am. J. Trop. Med. Hyg., 77 (2007), 82. Google Scholar

show all references

References:
[1]

A. D. Allen and M. Cisse, Determination of the frequency and correlation between glucose 6-phosphate dehydrogenase deficiency and sickle cell anemia (HbS) in a west African village (Mali), a malaria endemic region,, Technical Report, (2010). Google Scholar

[2]

N. T. J. Bailey, "The Mathematical Theory of Epidemics,", Hafner Publishing Co., (1957). Google Scholar

[3]

A. Bekessey, L. Molineaux and J. Storey, Estimation of incidence and recovery rates of Plasmodium falciparum parasitaemia from longitudinal data,, Bull. World Health Organ, 54 (1976), 685. Google Scholar

[4]

P. Carnevale, J. Mouchet, M. Coosemans, J. Julvez, S. Manguin, R. D. Lenoble and S. Sircoulou, "Biodiversit du Paludisme dans le Monde,", John Libbey Eurotext, (2004). Google Scholar

[5]

D. Coulibaly, D. Diallo, M. Thera, A. Dicko, A. Guindo, A. Kone, Y. Cissoko, S. Coulibaly, A. Djimde, K. Lyke, O. Doumbo and C. Plowe, Impact of preseason treatment on incidence of falciparum malaria and parasite density at a site for testing malaria vaccines in Bandiagara, Mali,, Am. J. Trop. Med. Hyg., 67 (2002), 604. Google Scholar

[6]

R. Carter, K. N. Mendis and D. Roberts, Spatial targeting of interventions against malaria,, Bulletin of the World Health Organization, 78 (2000), 1401. Google Scholar

[7]

Centers for Disease Control and Prevention, Malaria., Availabe from: \url{http://www.cdc.gov/malaria}., (). Google Scholar

[8]

B. Dembele, A. Friedman and A.-A. Yakubu, Malaria model with periodic mosquito birth and death rates,, J. Biol. Dyn., 3 (2009), 430. Google Scholar

[9]

B. Dembele, A. Friedman and A.-A. Yakubu, Mathematical model for optimal use of sulfadoxine-pyrimethamine as a temporary malaria vaccine,, Bulletin of Mathematical Biology, 72 (2010), 914. doi: 10.1007/s11538-009-9476-9. Google Scholar

[10]

K. Dietz, Mathematical models for malaria in different ecological, zones,, Presented to the 7th International Biometric Conference, (1970). Google Scholar

[11]

K. Dietz, Mathematical models for transmission and control of malaria,, in, (1988), 1091. Google Scholar

[12]

A. N. Gideon, and W. S. Shu, A Mathematical Model for Endemic Malaria with Variable Human and Mosquito populations,, United Nations Educational Scientific and Cultural Organization and International Atomic Energy Agency, (1999). Google Scholar

[13]

N. J. Govella, F. O. Okumu and F. Killeen. Gerry, Insecticide-treated nets can reduce malaria transmission by mosquitoes which feed outdoors,, Am. J. Trop. Med. Hyg., 82 (2010), 415. doi: 10.4269/ajtmh.2010.09-0579. Google Scholar

[14]

N. C. Grassly and C. Fraser, Seasonal infectious disease epidemiology,, Proc. R. Soc. B, 273 (2006), 2541. doi: 10.1098/rspb.2006.3604. Google Scholar

[15]

W. O. Kermack and A. G. McKendrick, Contributions to the mathematical theory of epidemics ,, Proc. R. Soc. A, 115 (1927), 700. doi: 10.1098/rspa.1927.0118. Google Scholar

[16]

G. F. Killeen, A. Seyoum and B. G. J. Knols, Rationalizing historical successes of malaria control in Africa in terms of mosquito resource availability management,, Am. J. Trop. Med. Hyg., 71 (2004), 87. Google Scholar

[17]

A. J. Lokta, Contributions to the analysis of malaria epidemiology,, Am. J. Hyg., 3 (1923), 11. Google Scholar

[18]

G. Macdonald, The analysis of infection rates in diseases in which supperinfection occurs,, Trop. Dis. Bull., 47 (1950), 907. Google Scholar

[19]

E. Martini, "Berechnungen und Beobachtungen zur Epidemiologie und Bekam pfung der Malaria,", Gente, (1921). Google Scholar

[20]

F. E. McKenzie and H. W. Bossert, An integrated model of Plasmodium falciparum dynamics,, J. Theor. Biol., 232 (2005), 411. doi: 10.1016/j.jtbi.2004.08.021. Google Scholar

[21]

A. L. Menach, E. F. McKenzie, A. Flahault and D. L. Smith, The unexpected importance of mosquito oviposition behaviour for malaria: Non-productive larval habitats can be sources for malaria transmission,, Malaria Journal, (2005), 4. Google Scholar

[22]

National Institute of Allergy and Infectious Diseases, Malaria,, Publication No. 02-7139, (2002), 02. Google Scholar

[23]

T. J. Norman and M. A. Baley, "The Biomathematics of Malaria,", Oxford University Press, (1982). Google Scholar

[24]

R. Ross, "The Prevention of Malaria," 2nd edition,, With Addendum on the Theory of Happenings, (1911). Google Scholar

[25]

N. Sagoba, S. Doumbia, P. Vounatsou, I. Baber, M. Keita, M. Maiga, S. Toure, G. Dolo, T. Smith and J. M. C. Ribeiro, Monitoring of larval habitats and mosquito densities in the Sudan savanna of Mali: Implications of malaria vector control,, Am. J. Trop. Med. Hyg., 77 (2007), 82. Google Scholar

[1]

Raphael Stuhlmeier. Internal Gerstner waves on a sloping bed. Discrete & Continuous Dynamical Systems - A, 2014, 34 (8) : 3183-3192. doi: 10.3934/dcds.2014.34.3183

[2]

Carlos Gutierrez, Víctor Guíñez, Alvaro Castañeda. Quartic differential forms and transversal nets with singularities. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 225-249. doi: 10.3934/dcds.2010.26.225

[3]

Hui Wan, Jing-An Cui. A model for the transmission of malaria. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 479-496. doi: 10.3934/dcdsb.2009.11.479

[4]

Ali Gharouni, Lin Wang. Modeling the spread of bed bug infestation and optimal resource allocation for disinfestation. Mathematical Biosciences & Engineering, 2016, 13 (5) : 969-980. doi: 10.3934/mbe.2016025

[5]

Arminda Moreno-Díaz, Gabriel de Blasio, Moreno-Díaz Jr.. Distributed, layered and reliable computing nets to represent neuronal receptive fields. Mathematical Biosciences & Engineering, 2014, 11 (2) : 343-361. doi: 10.3934/mbe.2014.11.343

[6]

Jia Li. A malaria model with partial immunity in humans. Mathematical Biosciences & Engineering, 2008, 5 (4) : 789-801. doi: 10.3934/mbe.2008.5.789

[7]

Expeditho Mtisi, Herieth Rwezaura, Jean Michel Tchuenche. A mathematical analysis of malaria and tuberculosis co-dynamics. Discrete & Continuous Dynamical Systems - B, 2009, 12 (4) : 827-864. doi: 10.3934/dcdsb.2009.12.827

[8]

Bassidy Dembele, Abdul-Aziz Yakubu. Controlling imported malaria cases in the United States of America. Mathematical Biosciences & Engineering, 2017, 14 (1) : 95-109. doi: 10.3934/mbe.2017007

[9]

G.A. Ngwa. Modelling the dynamics of endemic malaria in growing populations. Discrete & Continuous Dynamical Systems - B, 2004, 4 (4) : 1173-1202. doi: 10.3934/dcdsb.2004.4.1173

[10]

Yanyu Xiao, Xingfu Zou. On latencies in malaria infections and their impact on the disease dynamics. Mathematical Biosciences & Engineering, 2013, 10 (2) : 463-481. doi: 10.3934/mbe.2013.10.463

[11]

Jia Li. Malaria model with stage-structured mosquitoes. Mathematical Biosciences & Engineering, 2011, 8 (3) : 753-768. doi: 10.3934/mbe.2011.8.753

[12]

Jinliang Wang, Jingmei Pang, Toshikazu Kuniya. A note on global stability for malaria infections model with latencies. Mathematical Biosciences & Engineering, 2014, 11 (4) : 995-1001. doi: 10.3934/mbe.2014.11.995

[13]

Hongyan Yin, Cuihong Yang, Xin'an Zhang, Jia Li. The impact of releasing sterile mosquitoes on malaria transmission. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3837-3853. doi: 10.3934/dcdsb.2018113

[14]

Changguang Dong. Separated nets arising from certain higher rank $\mathbb{R}^k$ actions on homogeneous spaces. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4231-4238. doi: 10.3934/dcds.2017180

[15]

Zindoga Mukandavire, Abba B. Gumel, Winston Garira, Jean Michel Tchuenche. Mathematical analysis of a model for HIV-malaria co-infection. Mathematical Biosciences & Engineering, 2009, 6 (2) : 333-362. doi: 10.3934/mbe.2009.6.333

[16]

Lizhong Qiang, Bin-Guo Wang. An almost periodic malaria transmission model with time-delayed input of vector. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1525-1546. doi: 10.3934/dcdsb.2017073

[17]

Derdei Bichara, Nathalie Cozic, Abderrahman Iggidr. On the estimation of sequestered infected erythrocytes in Plasmodium falciparum malaria patients. Mathematical Biosciences & Engineering, 2014, 11 (4) : 741-759. doi: 10.3934/mbe.2014.11.741

[18]

Eunha Shim, Zhilan Feng, Carlos Castillo-Chavez. Differential impact of sickle cell trait on symptomatic and asymptomatic malaria. Mathematical Biosciences & Engineering, 2012, 9 (4) : 877-898. doi: 10.3934/mbe.2012.9.877

[19]

Kazeem Oare Okosun, Robert Smith?. Optimal control analysis of malaria-schistosomiasis co-infection dynamics. Mathematical Biosciences & Engineering, 2017, 14 (2) : 377-405. doi: 10.3934/mbe.2017024

[20]

Sebastian Aniţa, Vincenzo Capasso. Stabilization of a reaction-diffusion system modelling malaria transmission. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1673-1684. doi: 10.3934/dcdsb.2012.17.1673

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]