September  2012, 17(6): 1775-1794. doi: 10.3934/dcdsb.2012.17.1775

Slow manifold reduction of a stochastic chemical reaction: Exploring Keizer's paradox

1. 

Department of Mathematics, University of Utah, Salt Lake City, UT 84112, United States, United States

Received  May 2011 Revised  November 2011 Published  May 2012

Keizer's paradox refers to the observation that deterministic and stochastic descriptions of chemical reactions can predict vastly different long term outcomes. In this paper, we use slow manifold analysis to help resolve this paradox for four variants of a simple autocatalytic reaction. We also provide rigorous estimates of the spectral gap of important linear operators, which establishes parameter ranges in which the slow manifold analysis is appropriate.
Citation: Parker Childs, James P. Keener. Slow manifold reduction of a stochastic chemical reaction: Exploring Keizer's paradox. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1775-1794. doi: 10.3934/dcdsb.2012.17.1775
References:
[1]

L. J. S. Allen, "An Introduction to Stochastic Processes with Applications to Biology,'', Pearson Education, (2003). Google Scholar

[2]

J. Beischke, P. Weber, N. Sarafoff, M. Beekes, A. Giese and H. Kretzschmar, Autocatalytic self-propagation of misfolded prion protein,, Proc. Natl. Acad. Sci., 101 (2004), 12207. doi: 10.1073/pnas.0404650101. Google Scholar

[3]

C. W. Gardiner, "Handbook of Stochastic Methods. For Physics, Chemistry and the Natural Sciences,'' Second edition,, Springer Series in Synergetics, 13 (1985). Google Scholar

[4]

B. L. Granovsky and A. I. Zeifman, The decay function of nonhomogeneous birth-death processes, with application to mean-field models,, Stoch. Process. Appl., 72 (1997), 105. doi: 10.1016/S0304-4149(97)00085-9. Google Scholar

[5]

B. L. Granovsky and A. I. Zeifman, The $N$-limit of spectral gap of a class of birth-death Markov chains,, Appl. Stoch. Models Bus. Ind., 16 (2000), 235. doi: 10.1002/1526-4025(200010/12)16:4<235::AID-ASMB415>3.3.CO;2-J. Google Scholar

[6]

J. Keizer, "Statistical Thermodynamics of Nonequilibrium Processes,'', Springer-Verlag, (1987). Google Scholar

[7]

T. G. Kurtz, Limit theorems for sequences of jump Markov processes approximating ordinary differential processes,, J. Appl. Prob., 8 (1971), 344. Google Scholar

[8]

T. G. Kurtz, The relationship between stochastic and deterministic models for chemical reactions,, J. Chem. Phys., 57 (1972), 2976. doi: 10.1063/1.1678692. Google Scholar

[9]

I. Nåsell, Extinction and quasi-stationarity in the Verhulst logistic model,, Journal of Theoretical Biology, 211 (2001), 11. doi: 10.1006/jtbi.2001.2328. Google Scholar

[10]

H. Qian and L. M. Bishop, The chemical master equation approach to nonequilibrium steady-state of open biochemical systems: Linear single-molecule enzyme kinetics and nonlinear biochemical reaction networks,, Int. J. Mol. Sci., 11 (2010), 3472. doi: 10.3390/ijms11093472. Google Scholar

[11]

N. van Kampen, "Stochastic Processes in Physics and Chemistry,'', Lecture Notes in Mathematics, 888 (1981). Google Scholar

[12]

M. Vellela and H. Qian, A quasistationary analysis of a stochastic chemical reaction: Keizer's paradox,, Bull. Math. Biol., 69 (2007), 1727. doi: 10.1007/s11538-006-9188-3. Google Scholar

show all references

References:
[1]

L. J. S. Allen, "An Introduction to Stochastic Processes with Applications to Biology,'', Pearson Education, (2003). Google Scholar

[2]

J. Beischke, P. Weber, N. Sarafoff, M. Beekes, A. Giese and H. Kretzschmar, Autocatalytic self-propagation of misfolded prion protein,, Proc. Natl. Acad. Sci., 101 (2004), 12207. doi: 10.1073/pnas.0404650101. Google Scholar

[3]

C. W. Gardiner, "Handbook of Stochastic Methods. For Physics, Chemistry and the Natural Sciences,'' Second edition,, Springer Series in Synergetics, 13 (1985). Google Scholar

[4]

B. L. Granovsky and A. I. Zeifman, The decay function of nonhomogeneous birth-death processes, with application to mean-field models,, Stoch. Process. Appl., 72 (1997), 105. doi: 10.1016/S0304-4149(97)00085-9. Google Scholar

[5]

B. L. Granovsky and A. I. Zeifman, The $N$-limit of spectral gap of a class of birth-death Markov chains,, Appl. Stoch. Models Bus. Ind., 16 (2000), 235. doi: 10.1002/1526-4025(200010/12)16:4<235::AID-ASMB415>3.3.CO;2-J. Google Scholar

[6]

J. Keizer, "Statistical Thermodynamics of Nonequilibrium Processes,'', Springer-Verlag, (1987). Google Scholar

[7]

T. G. Kurtz, Limit theorems for sequences of jump Markov processes approximating ordinary differential processes,, J. Appl. Prob., 8 (1971), 344. Google Scholar

[8]

T. G. Kurtz, The relationship between stochastic and deterministic models for chemical reactions,, J. Chem. Phys., 57 (1972), 2976. doi: 10.1063/1.1678692. Google Scholar

[9]

I. Nåsell, Extinction and quasi-stationarity in the Verhulst logistic model,, Journal of Theoretical Biology, 211 (2001), 11. doi: 10.1006/jtbi.2001.2328. Google Scholar

[10]

H. Qian and L. M. Bishop, The chemical master equation approach to nonequilibrium steady-state of open biochemical systems: Linear single-molecule enzyme kinetics and nonlinear biochemical reaction networks,, Int. J. Mol. Sci., 11 (2010), 3472. doi: 10.3390/ijms11093472. Google Scholar

[11]

N. van Kampen, "Stochastic Processes in Physics and Chemistry,'', Lecture Notes in Mathematics, 888 (1981). Google Scholar

[12]

M. Vellela and H. Qian, A quasistationary analysis of a stochastic chemical reaction: Keizer's paradox,, Bull. Math. Biol., 69 (2007), 1727. doi: 10.1007/s11538-006-9188-3. Google Scholar

[1]

Marzia Bisi, Giampiero Spiga. On a kinetic BGK model for slow chemical reactions. Kinetic & Related Models, 2011, 4 (1) : 153-167. doi: 10.3934/krm.2011.4.153

[2]

Congming Li, Eric S. Wright. Modeling chemical reactions in rivers: A three component reaction. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 377-384. doi: 10.3934/dcds.2001.7.373

[3]

Arno F. Münster. Simulation of stationary chemical patterns and waves in ionic reactions. Discrete & Continuous Dynamical Systems - B, 2002, 2 (1) : 35-46. doi: 10.3934/dcdsb.2002.2.35

[4]

Marzia Bisi, Maria Groppi, Giampiero Spiga. Flame structure from a kinetic model for chemical reactions. Kinetic & Related Models, 2010, 3 (1) : 17-34. doi: 10.3934/krm.2010.3.17

[5]

Wenxiong Chen, Congming Li, Eric S. Wright. On a nonlinear parabolic system-modeling chemical reactions in rivers. Communications on Pure & Applied Analysis, 2005, 4 (4) : 889-899. doi: 10.3934/cpaa.2005.4.889

[6]

Julien Coatléven, Claudio Altafini. A kinetic mechanism inducing oscillations in simple chemical reactions networks. Mathematical Biosciences & Engineering, 2010, 7 (2) : 301-312. doi: 10.3934/mbe.2010.7.301

[7]

Andrea Picco, Lamberto Rondoni. Boltzmann maps for networks of chemical reactions and the multi-stability problem. Networks & Heterogeneous Media, 2009, 4 (3) : 501-526. doi: 10.3934/nhm.2009.4.501

[8]

Steinar Evje, Aksel Hiorth, Merete V. Madland, Reidar I. Korsnes. A mathematical model relevant for weakening of chalk reservoirs due to chemical reactions. Networks & Heterogeneous Media, 2009, 4 (4) : 755-788. doi: 10.3934/nhm.2009.4.755

[9]

Jifa Jiang, Junping Shi. Dynamics of a reaction-diffusion system of autocatalytic chemical reaction. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 245-258. doi: 10.3934/dcds.2008.21.245

[10]

Wenying Feng, Guang Zhang, Yikang Chai. Existence of positive solutions for second order differential equations arising from chemical reactor theory. Conference Publications, 2007, 2007 (Special) : 373-381. doi: 10.3934/proc.2007.2007.373

[11]

Jean-Pierre Conze, Y. Guivarc'h. Ergodicity of group actions and spectral gap, applications to random walks and Markov shifts. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 4239-4269. doi: 10.3934/dcds.2013.33.4239

[12]

Artur Stephan, Holger Stephan. Memory equations as reduced Markov processes. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 2133-2155. doi: 10.3934/dcds.2019089

[13]

Ivan Gentil, Bogusław Zegarlinski. Asymptotic behaviour of reversible chemical reaction-diffusion equations. Kinetic & Related Models, 2010, 3 (3) : 427-444. doi: 10.3934/krm.2010.3.427

[14]

H.Thomas Banks, Shuhua Hu. Nonlinear stochastic Markov processes and modeling uncertainty in populations. Mathematical Biosciences & Engineering, 2012, 9 (1) : 1-25. doi: 10.3934/mbe.2012.9.1

[15]

Niclas Bernhoff. Boundary layers for discrete kinetic models: Multicomponent mixtures, polyatomic molecules, bimolecular reactions, and quantum kinetic equations. Kinetic & Related Models, 2017, 10 (4) : 925-955. doi: 10.3934/krm.2017037

[16]

Vladimir Kazakov. Sampling - reconstruction procedure with jitter of markov continuous processes formed by stochastic differential equations of the first order. Conference Publications, 2009, 2009 (Special) : 433-441. doi: 10.3934/proc.2009.2009.433

[17]

Elena Shchepakina, Olga Korotkova. Canard explosion in chemical and optical systems. Discrete & Continuous Dynamical Systems - B, 2013, 18 (2) : 495-512. doi: 10.3934/dcdsb.2013.18.495

[18]

Rúben Sousa, Semyon Yakubovich. The spectral expansion approach to index transforms and connections with the theory of diffusion processes. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2351-2378. doi: 10.3934/cpaa.2018112

[19]

Yun Li, Fuke Wu, George Yin. Asymptotic behavior of gene expression with complete memory and two-time scales based on the chemical Langevin equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4417-4443. doi: 10.3934/dcdsb.2019125

[20]

Guy Katriel. Existence of periodic solutions for enzyme-catalysed reactions with periodic substrate input. Conference Publications, 2007, 2007 (Special) : 551-557. doi: 10.3934/proc.2007.2007.551

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]