September  2012, 17(6): 1639-1649. doi: 10.3934/dcdsb.2012.17.1639

On the validity of formal asymptotic expansions in Allen-Cahn equation and FitzHugh-Nagumo system with generic initial data

1. 

Univ. Montpellier 2, I3M, UMR CNRS 5149, CC051, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France

2. 

Graduate school of Mathematical Sciences, University of Tokyo, Komaba 3-8-1, Tokyo 153-8914

Received  November 2011 Revised  February 2012 Published  May 2012

Formal asymptotic expansions have long been used to study the singularly perturbed Allen-Cahn type equations and reaction-diffusion systems, including in particular the FitzHugh-Nagumo system. Despite their successful role, it has been largely unclear whether or not such expansions really represent the actual profile of solutions with rather general initial data. By combining our earlier result and known properties of eternal solutions of the Allen-Cahn equation, we prove validity of the principal term of the formal expansions for a large class of solutions.
Citation: Matthieu Alfaro, Hiroshi Matano. On the validity of formal asymptotic expansions in Allen-Cahn equation and FitzHugh-Nagumo system with generic initial data. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1639-1649. doi: 10.3934/dcdsb.2012.17.1639
References:
[1]

M. Alfaro, J. Droniou and H. Matano, Convergence rate of the Allen-Cahn equation to generalized motion by mean curvature,, J. Evol. Equ., (). Google Scholar

[2]

M. Alfaro, D. Hilhorst and H. Matano, The singular limit of the Allen-Cahn equation and the FitzHugh-Nagumo system,, J. Differential Equations, 245 (2008), 505. doi: 10.1016/j.jde.2008.01.014. Google Scholar

[3]

S. Allen and J. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening,, Acta Metallica, 27 (1979), 1084. Google Scholar

[4]

G. Barles, L. Bronsard and P. E. Souganidis, Front propagation for reaction-diffusion equations of bistable type,, Ann. Inst. Henri Poincaré Anal. Non Linéaire, 9 (1992), 479. Google Scholar

[5]

G. Barles and F. Da Lio, A geometrical approach to front propagation problems in bounded domains with Neumann-type boundary conditions,, Interfaces Free Bound., 5 (2003), 239. Google Scholar

[6]

G. Barles, H. M. Soner and P. E. Souganidis, Front propagation and phase field theory,, SIAM J. Control Optim., 31 (1993), 439. doi: 10.1137/0331021. Google Scholar

[7]

G. Barles and P. E. Souganidis, A new approach to front propagation problems: Theory and applications,, Arch. Rational Mech. Anal., 141 (1998), 237. doi: 10.1007/s002050050077. Google Scholar

[8]

G. Bellettini and M. Paolini, Quasi-optimal error estimates for the mean curvature flow with a forcing term,, Differential Integral Equations, 8 (1995), 735. Google Scholar

[9]

H. Berestycki and F. Hamel, Generalized travelling waves for reaction-diffusion equations, in "Perspectives in Nonlinear Partial Differential Equations," in honor of Haïm Brezis,, Contemp. Math., 446 (2007), 101. Google Scholar

[10]

L. Bronsard and R. V. Kohn, Motion by mean curvature as the singular limit of Ginzburg-Landau dynamics,, J. Differential Equations, 90 (1991), 211. doi: 10.1016/0022-0396(91)90147-2. Google Scholar

[11]

X. Chen, Generation and propagation of interfaces for reaction-diffusion equations,, J. Differential Equations, 96 (1992), 116. doi: 10.1016/0022-0396(92)90146-E. Google Scholar

[12]

X. Chen, Generation and propagation of interfaces for reaction-diffusion systems,, Trans. Amer. Math. Soc., 334 (1992), 877. doi: 10.2307/2154487. Google Scholar

[13]

X. Chen and F. Reitich, Local existence and uniqueness of solutions of the Stefan problem with surface tension and kinetic undercooling,, J. Math. Anal. Appl., 164 (1992), 350. doi: 10.1016/0022-247X(92)90119-X. Google Scholar

[14]

X.-Y. Chen, Dynamics of interfaces in reaction diffusion systems,, Hiroshima Math. J., 21 (1991), 47. Google Scholar

[15]

Y. G. Chen, Y. Giga and S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations,, J. Diff. Geometry, 33 (1991), 749. Google Scholar

[16]

L. C. Evans, H. M. Soner and P. E. Souganidis, Phase transitions and generalized motion by mean curvature,, Comm. Pure Appl. Math., 45 (1992), 1097. doi: 10.1002/cpa.3160450903. Google Scholar

[17]

L. C. Evans and J. Spruck, Motion of level sets by mean curvature. I,, J. Differential Geometry, 33 (1991), 635. Google Scholar

[18]

K. Kawasaki and T. Ohta, Kinetic drumhead model of interface I,, Progress of Theoretical Physics, 67 (1982), 147. doi: 10.1143/PTP.67.147. Google Scholar

[19]

H. Matano and M. Nara, Large time behavior of disturbed planar fronts in the Allen-Cahn equation,, J. Differential Equations, 251 (2011), 3522. doi: 10.1016/j.jde.2011.08.029. Google Scholar

[20]

P. de Mottoni and M. Schatzman, Development of interfaces in $\R^n$,, Proc. Roy. Soc. Edinburgh A, 116 (1990), 207. doi: 10.1017/S0308210500031486. Google Scholar

[21]

P. de Mottoni and M. Schatzman, Geometrical evolution of developed interfaces,, Trans. Amer. Math. Soc., 347 (1995), 1533. doi: 10.2307/2154960. Google Scholar

[22]

H. M. Soner, Ginzburg-Landau equation and motion by mean curvature. I. Convergence,, J. Geom. Anal., 7 (1997), 437. Google Scholar

[23]

H. M. Soner, Ginzburg-Landau equation and motion by mean curvature. II. Development of the initial interface,, J. Geom. Anal., 7 (1997), 477. Google Scholar

show all references

References:
[1]

M. Alfaro, J. Droniou and H. Matano, Convergence rate of the Allen-Cahn equation to generalized motion by mean curvature,, J. Evol. Equ., (). Google Scholar

[2]

M. Alfaro, D. Hilhorst and H. Matano, The singular limit of the Allen-Cahn equation and the FitzHugh-Nagumo system,, J. Differential Equations, 245 (2008), 505. doi: 10.1016/j.jde.2008.01.014. Google Scholar

[3]

S. Allen and J. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening,, Acta Metallica, 27 (1979), 1084. Google Scholar

[4]

G. Barles, L. Bronsard and P. E. Souganidis, Front propagation for reaction-diffusion equations of bistable type,, Ann. Inst. Henri Poincaré Anal. Non Linéaire, 9 (1992), 479. Google Scholar

[5]

G. Barles and F. Da Lio, A geometrical approach to front propagation problems in bounded domains with Neumann-type boundary conditions,, Interfaces Free Bound., 5 (2003), 239. Google Scholar

[6]

G. Barles, H. M. Soner and P. E. Souganidis, Front propagation and phase field theory,, SIAM J. Control Optim., 31 (1993), 439. doi: 10.1137/0331021. Google Scholar

[7]

G. Barles and P. E. Souganidis, A new approach to front propagation problems: Theory and applications,, Arch. Rational Mech. Anal., 141 (1998), 237. doi: 10.1007/s002050050077. Google Scholar

[8]

G. Bellettini and M. Paolini, Quasi-optimal error estimates for the mean curvature flow with a forcing term,, Differential Integral Equations, 8 (1995), 735. Google Scholar

[9]

H. Berestycki and F. Hamel, Generalized travelling waves for reaction-diffusion equations, in "Perspectives in Nonlinear Partial Differential Equations," in honor of Haïm Brezis,, Contemp. Math., 446 (2007), 101. Google Scholar

[10]

L. Bronsard and R. V. Kohn, Motion by mean curvature as the singular limit of Ginzburg-Landau dynamics,, J. Differential Equations, 90 (1991), 211. doi: 10.1016/0022-0396(91)90147-2. Google Scholar

[11]

X. Chen, Generation and propagation of interfaces for reaction-diffusion equations,, J. Differential Equations, 96 (1992), 116. doi: 10.1016/0022-0396(92)90146-E. Google Scholar

[12]

X. Chen, Generation and propagation of interfaces for reaction-diffusion systems,, Trans. Amer. Math. Soc., 334 (1992), 877. doi: 10.2307/2154487. Google Scholar

[13]

X. Chen and F. Reitich, Local existence and uniqueness of solutions of the Stefan problem with surface tension and kinetic undercooling,, J. Math. Anal. Appl., 164 (1992), 350. doi: 10.1016/0022-247X(92)90119-X. Google Scholar

[14]

X.-Y. Chen, Dynamics of interfaces in reaction diffusion systems,, Hiroshima Math. J., 21 (1991), 47. Google Scholar

[15]

Y. G. Chen, Y. Giga and S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations,, J. Diff. Geometry, 33 (1991), 749. Google Scholar

[16]

L. C. Evans, H. M. Soner and P. E. Souganidis, Phase transitions and generalized motion by mean curvature,, Comm. Pure Appl. Math., 45 (1992), 1097. doi: 10.1002/cpa.3160450903. Google Scholar

[17]

L. C. Evans and J. Spruck, Motion of level sets by mean curvature. I,, J. Differential Geometry, 33 (1991), 635. Google Scholar

[18]

K. Kawasaki and T. Ohta, Kinetic drumhead model of interface I,, Progress of Theoretical Physics, 67 (1982), 147. doi: 10.1143/PTP.67.147. Google Scholar

[19]

H. Matano and M. Nara, Large time behavior of disturbed planar fronts in the Allen-Cahn equation,, J. Differential Equations, 251 (2011), 3522. doi: 10.1016/j.jde.2011.08.029. Google Scholar

[20]

P. de Mottoni and M. Schatzman, Development of interfaces in $\R^n$,, Proc. Roy. Soc. Edinburgh A, 116 (1990), 207. doi: 10.1017/S0308210500031486. Google Scholar

[21]

P. de Mottoni and M. Schatzman, Geometrical evolution of developed interfaces,, Trans. Amer. Math. Soc., 347 (1995), 1533. doi: 10.2307/2154960. Google Scholar

[22]

H. M. Soner, Ginzburg-Landau equation and motion by mean curvature. I. Convergence,, J. Geom. Anal., 7 (1997), 437. Google Scholar

[23]

H. M. Soner, Ginzburg-Landau equation and motion by mean curvature. II. Development of the initial interface,, J. Geom. Anal., 7 (1997), 477. Google Scholar

[1]

Thomas I. Seidman. Interface conditions for a singular reaction-diffusion system. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 631-643. doi: 10.3934/dcdss.2009.2.631

[2]

Junping Shi, Jimin Zhang, Xiaoyan Zhang. Stability and asymptotic profile of steady state solutions to a reaction-diffusion pelagic-benthic algae growth model. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2325-2347. doi: 10.3934/cpaa.2019105

[3]

Luisa Malaguti, Cristina Marcelli, Serena Matucci. Continuous dependence in front propagation of convective reaction-diffusion equations. Communications on Pure & Applied Analysis, 2010, 9 (4) : 1083-1098. doi: 10.3934/cpaa.2010.9.1083

[4]

Danielle Hilhorst, Hideki Murakawa. Singular limit analysis of a reaction-diffusion system with precipitation and dissolution in a porous medium. Networks & Heterogeneous Media, 2014, 9 (4) : 669-682. doi: 10.3934/nhm.2014.9.669

[5]

Sebastién Gaucel, Michel Langlais. Some remarks on a singular reaction-diffusion system arising in predator-prey modeling. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 61-72. doi: 10.3934/dcdsb.2007.8.61

[6]

Ricardo Enguiça, Andrea Gavioli, Luís Sanchez. A class of singular first order differential equations with applications in reaction-diffusion. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 173-191. doi: 10.3934/dcds.2013.33.173

[7]

Jifa Jiang, Junping Shi. Dynamics of a reaction-diffusion system of autocatalytic chemical reaction. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 245-258. doi: 10.3934/dcds.2008.21.245

[8]

Linda J. S. Allen, B. M. Bolker, Yuan Lou, A. L. Nevai. Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 1-20. doi: 10.3934/dcds.2008.21.1

[9]

Keng Deng, Yixiang Wu. Asymptotic behavior for a reaction-diffusion population model with delay. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 385-395. doi: 10.3934/dcdsb.2015.20.385

[10]

Sven Jarohs, Tobias Weth. Asymptotic symmetry for a class of nonlinear fractional reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (6) : 2581-2615. doi: 10.3934/dcds.2014.34.2581

[11]

Ivan Gentil, Bogusław Zegarlinski. Asymptotic behaviour of reversible chemical reaction-diffusion equations. Kinetic & Related Models, 2010, 3 (3) : 427-444. doi: 10.3934/krm.2010.3.427

[12]

Yuncheng You. Asymptotic dynamics of reversible cubic autocatalytic reaction-diffusion systems. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1415-1445. doi: 10.3934/cpaa.2011.10.1415

[13]

Keng Deng. Asymptotic behavior of an SIR reaction-diffusion model with a linear source. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-13. doi: 10.3934/dcdsb.2019114

[14]

Vladimir V. Chepyzhov, Mark I. Vishik. Trajectory attractor for reaction-diffusion system with diffusion coefficient vanishing in time. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1493-1509. doi: 10.3934/dcds.2010.27.1493

[15]

Sze-Bi Hsu, Junping Shi, Feng-Bin Wang. Further studies of a reaction-diffusion system for an unstirred chemostat with internal storage. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3169-3189. doi: 10.3934/dcdsb.2014.19.3169

[16]

Nicolas Bacaër, Cheikh Sokhna. A reaction-diffusion system modeling the spread of resistance to an antimalarial drug. Mathematical Biosciences & Engineering, 2005, 2 (2) : 227-238. doi: 10.3934/mbe.2005.2.227

[17]

W. E. Fitzgibbon, M. Langlais, J.J. Morgan. A reaction-diffusion system modeling direct and indirect transmission of diseases. Discrete & Continuous Dynamical Systems - B, 2004, 4 (4) : 893-910. doi: 10.3934/dcdsb.2004.4.893

[18]

José-Francisco Rodrigues, Lisa Santos. On a constrained reaction-diffusion system related to multiphase problems. Discrete & Continuous Dynamical Systems - A, 2009, 25 (1) : 299-319. doi: 10.3934/dcds.2009.25.299

[19]

Haomin Huang, Mingxin Wang. The reaction-diffusion system for an SIR epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2039-2050. doi: 10.3934/dcdsb.2015.20.2039

[20]

Sebastian Aniţa, Vincenzo Capasso. Stabilization of a reaction-diffusion system modelling malaria transmission. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1673-1684. doi: 10.3934/dcdsb.2012.17.1673

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]