June  2012, 17(4): 1289-1307. doi: 10.3934/dcdsb.2012.17.1289

Simulating binary fluid-surfactant dynamics by a phase field model

1. 

Department of Applied Mathematics, Center of Mathematical Modeling and Scientific Computing, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu 30010, Taiwan, Taiwan

2. 

Department of Mathematics, National Center for Theoretical Sciences (Taipei offce), National Taiwan University, Taipei 10617, Taiwan

Received  February 2011 Revised  September 2011 Published  February 2012

In this paper, the dynamics of a binary fluid-surfactant system described by a phenomenological phase field model is investigated through analytical and numerical computations. We first consider the case of one-dimensional planar interface and prove the existence of the equilibrium solution. Then we derive the analytical equilibrium solution for the order parameter and the surfactant concentration in a particular case. The results show that the present phase field formulation qualitatively mimics the surfactant adsorption on the binary fluid interfaces. We further study the time-dependent solutions of the system by numerical computations based on the pseudospectral Fourier computational framework. The present numerical results are in a good agreement with the previous theoretical study in the way that the surfactant favors the creation of interfaces and also stabilizes the formation of phase regions.
Citation: Chun-Hao Teng, I-Liang Chern, Ming-Chih Lai. Simulating binary fluid-surfactant dynamics by a phase field model. Discrete & Continuous Dynamical Systems - B, 2012, 17 (4) : 1289-1307. doi: 10.3934/dcdsb.2012.17.1289
References:
[1]

A. B. Branger and D. M. Eckmann, Accelerated arteriolar gas embolism reabsorption by an exogenous surfactant,, Anesthesiology, 96 (2002), 971. doi: 10.1097/00000542-200204000-00027. Google Scholar

[2]

J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system. I. Interfacial energy free energy,, J. Chem. Phys., 28 (1958), 258. doi: 10.1063/1.1744102. Google Scholar

[3]

J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system. III. Nucleation in a two-component incompressible fluid,, J. Chem. Phys., 31 (1959), 688. doi: 10.1063/1.1730447. Google Scholar

[4]

H. Diamant and D. Andelman, Kinetics of surfactant adsorption at fluid-fluid interfaces,, J. Phys. Chem., 100 (1996), 13732. doi: 10.1021/jp960377k. Google Scholar

[5]

H. Diamant, G. Ariel and D. Andelman, Kinetics of surfactant adsorption: The free energy approach,, Colloids Surf A, 183-185 (2001), 183. doi: 10.1016/S0927-7757(01)00553-2. Google Scholar

[6]

C. D. Eggleton, T. M. Tsai and K. J. Stebe, Tip streaming from a drop in the presence of surfactants,, Phys. Rev. Lett., 87 (2001), 048302. doi: 10.1103/PhysRevLett.87.048302. Google Scholar

[7]

I. Fonseca, M. Morini and V. Slastikov, Surfactants in foam stability: A phase-field model,, Arch. Rational Mech. Anal., 183 (2007), 411. doi: 10.1007/s00205-006-0012-x. Google Scholar

[8]

J. S. Hesthaven, S. Gottlieb and D. Gottlieb, "Spectral Methods for Time-Dependent Problems,", Cambridge Monographs on Applied and Computational Mathematics, 21 (2007). Google Scholar

[9]

D. Jacqmin, Calculation of two-phase Navier-Stokes flows using phase-field modeling,, J. Comput. Phys., 155 (1999), 96. doi: 10.1006/jcph.1999.6332. Google Scholar

[10]

Y. T. Hu, D. J. Pine and L. G. Leal, Drop deformation, breakup, and coalescence with compatibilizer,, Phys. Fluids, 18 (2000), 484. doi: 10.1063/1.870254. Google Scholar

[11]

T. Kawakatsu, K. Kawasaki, M. Furusaka, H. Okabayashi and T. Kanaya, Late stage dynamics of phase separation processes of binary mixtures containing surfactants,, J. Chem. Phys., 99 (1993), 8200. doi: 10.1063/1.466213. Google Scholar

[12]

J. Kim, Numerical simulations of phase separation dynamics in a water-oil-surfactant system,, J. Colloid Interface Sci., 303 (2006), 272. doi: 10.1016/j.jcis.2006.07.032. Google Scholar

[13]

S. Komura and H. Kodama, Two-order-parameter model for an oil-water-surfactant system,, Phys. Rew. E, 55 (1997), 1722. doi: 10.1103/PhysRevE.55.1722. Google Scholar

[14]

M. Laradji, H. Gau, M. Grant and M. Zuckermann, The effect of surfactants on the dynamics of phase separation,, J. Phys.: Condens. Matter, 4 (1992), 6715. doi: 10.1088/0953-8984/4/32/006. Google Scholar

[15]

G. B. McFadden and A. A. Wheeler, On the Gibbs adsorption equation and diffuse interface models,, Proc. R. Soc. Lond. A, 458 (2002), 1129. doi: 10.1098/rspa.2001.0908. Google Scholar

[16]

E. B. Nauman and D. Q. He, Non-linear diffusion and phase separation,, Chem. Eng. Sci., 49 (2001), 1999. doi: 10.1016/S0009-2509(01)00005-7. Google Scholar

[17]

D. Raabe, "Computational Materials Science: The Simulation of Materials, Microstructures and Properties,", Wiley-VCH, (1998). Google Scholar

[18]

T. Teramoto and F. Yonezawa, Droplet growth dynamics in a water/oil/surfactant system,, J. Colloid Interface Sci., 235 (2001), 329. doi: 10.1006/jcis.2000.7349. Google Scholar

[19]

R. G. M. van der Sman and S. van der Graaf, Diffuse interface model of surfactant adsorption onto flat and droplet interfaces,, Rheol Acta, 46 (2006), 3. Google Scholar

show all references

References:
[1]

A. B. Branger and D. M. Eckmann, Accelerated arteriolar gas embolism reabsorption by an exogenous surfactant,, Anesthesiology, 96 (2002), 971. doi: 10.1097/00000542-200204000-00027. Google Scholar

[2]

J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system. I. Interfacial energy free energy,, J. Chem. Phys., 28 (1958), 258. doi: 10.1063/1.1744102. Google Scholar

[3]

J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system. III. Nucleation in a two-component incompressible fluid,, J. Chem. Phys., 31 (1959), 688. doi: 10.1063/1.1730447. Google Scholar

[4]

H. Diamant and D. Andelman, Kinetics of surfactant adsorption at fluid-fluid interfaces,, J. Phys. Chem., 100 (1996), 13732. doi: 10.1021/jp960377k. Google Scholar

[5]

H. Diamant, G. Ariel and D. Andelman, Kinetics of surfactant adsorption: The free energy approach,, Colloids Surf A, 183-185 (2001), 183. doi: 10.1016/S0927-7757(01)00553-2. Google Scholar

[6]

C. D. Eggleton, T. M. Tsai and K. J. Stebe, Tip streaming from a drop in the presence of surfactants,, Phys. Rev. Lett., 87 (2001), 048302. doi: 10.1103/PhysRevLett.87.048302. Google Scholar

[7]

I. Fonseca, M. Morini and V. Slastikov, Surfactants in foam stability: A phase-field model,, Arch. Rational Mech. Anal., 183 (2007), 411. doi: 10.1007/s00205-006-0012-x. Google Scholar

[8]

J. S. Hesthaven, S. Gottlieb and D. Gottlieb, "Spectral Methods for Time-Dependent Problems,", Cambridge Monographs on Applied and Computational Mathematics, 21 (2007). Google Scholar

[9]

D. Jacqmin, Calculation of two-phase Navier-Stokes flows using phase-field modeling,, J. Comput. Phys., 155 (1999), 96. doi: 10.1006/jcph.1999.6332. Google Scholar

[10]

Y. T. Hu, D. J. Pine and L. G. Leal, Drop deformation, breakup, and coalescence with compatibilizer,, Phys. Fluids, 18 (2000), 484. doi: 10.1063/1.870254. Google Scholar

[11]

T. Kawakatsu, K. Kawasaki, M. Furusaka, H. Okabayashi and T. Kanaya, Late stage dynamics of phase separation processes of binary mixtures containing surfactants,, J. Chem. Phys., 99 (1993), 8200. doi: 10.1063/1.466213. Google Scholar

[12]

J. Kim, Numerical simulations of phase separation dynamics in a water-oil-surfactant system,, J. Colloid Interface Sci., 303 (2006), 272. doi: 10.1016/j.jcis.2006.07.032. Google Scholar

[13]

S. Komura and H. Kodama, Two-order-parameter model for an oil-water-surfactant system,, Phys. Rew. E, 55 (1997), 1722. doi: 10.1103/PhysRevE.55.1722. Google Scholar

[14]

M. Laradji, H. Gau, M. Grant and M. Zuckermann, The effect of surfactants on the dynamics of phase separation,, J. Phys.: Condens. Matter, 4 (1992), 6715. doi: 10.1088/0953-8984/4/32/006. Google Scholar

[15]

G. B. McFadden and A. A. Wheeler, On the Gibbs adsorption equation and diffuse interface models,, Proc. R. Soc. Lond. A, 458 (2002), 1129. doi: 10.1098/rspa.2001.0908. Google Scholar

[16]

E. B. Nauman and D. Q. He, Non-linear diffusion and phase separation,, Chem. Eng. Sci., 49 (2001), 1999. doi: 10.1016/S0009-2509(01)00005-7. Google Scholar

[17]

D. Raabe, "Computational Materials Science: The Simulation of Materials, Microstructures and Properties,", Wiley-VCH, (1998). Google Scholar

[18]

T. Teramoto and F. Yonezawa, Droplet growth dynamics in a water/oil/surfactant system,, J. Colloid Interface Sci., 235 (2001), 329. doi: 10.1006/jcis.2000.7349. Google Scholar

[19]

R. G. M. van der Sman and S. van der Graaf, Diffuse interface model of surfactant adsorption onto flat and droplet interfaces,, Rheol Acta, 46 (2006), 3. Google Scholar

[1]

Tian Ma, Shouhong Wang. Cahn-Hilliard equations and phase transition dynamics for binary systems. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 741-784. doi: 10.3934/dcdsb.2009.11.741

[2]

Pierluigi Colli, Gianni Gilardi, Danielle Hilhorst. On a Cahn-Hilliard type phase field system related to tumor growth. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2423-2442. doi: 10.3934/dcds.2015.35.2423

[3]

Irena Pawłow, Wojciech M. Zajączkowski. A sixth order Cahn-Hilliard type equation arising in oil-water-surfactant mixtures. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1823-1847. doi: 10.3934/cpaa.2011.10.1823

[4]

Pierluigi Colli, Gianni Gilardi, Elisabetta Rocca, Jürgen Sprekels. Asymptotic analyses and error estimates for a Cahn-Hilliard type phase field system modelling tumor growth. Discrete & Continuous Dynamical Systems - S, 2017, 10 (1) : 37-54. doi: 10.3934/dcdss.2017002

[5]

Andrea Signori. Optimal treatment for a phase field system of Cahn-Hilliard type modeling tumor growth by asymptotic scheme. Mathematical Control & Related Fields, 2019, 0 (0) : 0-0. doi: 10.3934/mcrf.2019040

[6]

Desheng Li, Xuewei Ju. On dynamical behavior of viscous Cahn-Hilliard equation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2207-2221. doi: 10.3934/dcds.2012.32.2207

[7]

Laurence Cherfils, Alain Miranville, Sergey Zelik. On a generalized Cahn-Hilliard equation with biological applications. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2013-2026. doi: 10.3934/dcdsb.2014.19.2013

[8]

Álvaro Hernández, Michał Kowalczyk. Rotationally symmetric solutions to the Cahn-Hilliard equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 801-827. doi: 10.3934/dcds.2017033

[9]

Mauro Fabrizio, Claudio Giorgi, Angelo Morro. Phase transition and separation in compressible Cahn-Hilliard fluids. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 73-88. doi: 10.3934/dcdsb.2014.19.73

[10]

Georgia Karali, Yuko Nagase. On the existence of solution for a Cahn-Hilliard/Allen-Cahn equation. Discrete & Continuous Dynamical Systems - S, 2014, 7 (1) : 127-137. doi: 10.3934/dcdss.2014.7.127

[11]

Annalisa Iuorio, Stefano Melchionna. Long-time behavior of a nonlocal Cahn-Hilliard equation with reaction. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3765-3788. doi: 10.3934/dcds.2018163

[12]

Dimitra Antonopoulou, Georgia Karali, Georgios T. Kossioris. Asymptotics for a generalized Cahn-Hilliard equation with forcing terms. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1037-1054. doi: 10.3934/dcds.2011.30.1037

[13]

Dimitra Antonopoulou, Georgia Karali. Existence of solution for a generalized stochastic Cahn-Hilliard equation on convex domains. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 31-55. doi: 10.3934/dcdsb.2011.16.31

[14]

Alain Miranville, Sergey Zelik. The Cahn-Hilliard equation with singular potentials and dynamic boundary conditions. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 275-310. doi: 10.3934/dcds.2010.28.275

[15]

S. Maier-Paape, Ulrich Miller. Connecting continua and curves of equilibria of the Cahn-Hilliard equation on the square. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1137-1153. doi: 10.3934/dcds.2006.15.1137

[16]

Laurence Cherfils, Madalina Petcu, Morgan Pierre. A numerical analysis of the Cahn-Hilliard equation with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1511-1533. doi: 10.3934/dcds.2010.27.1511

[17]

Amy Novick-Cohen, Andrey Shishkov. Upper bounds for coarsening for the degenerate Cahn-Hilliard equation. Discrete & Continuous Dynamical Systems - A, 2009, 25 (1) : 251-272. doi: 10.3934/dcds.2009.25.251

[18]

Gianni Gilardi, A. Miranville, Giulio Schimperna. On the Cahn-Hilliard equation with irregular potentials and dynamic boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (3) : 881-912. doi: 10.3934/cpaa.2009.8.881

[19]

Dirk Blömker, Bernhard Gawron, Thomas Wanner. Nucleation in the one-dimensional stochastic Cahn-Hilliard model. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 25-52. doi: 10.3934/dcds.2010.27.25

[20]

Changchun Liu, Hui Tang. Existence of periodic solution for a Cahn-Hilliard/Allen-Cahn equation in two space dimensions. Evolution Equations & Control Theory, 2017, 6 (2) : 219-237. doi: 10.3934/eect.2017012

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]