June  2012, 17(4): 1113-1137. doi: 10.3934/dcdsb.2012.17.1113

Well-posedness of a model for water waves with viscosity

1. 

Department of Mathematics, Drexel University, Philadelphia, PA 19104

2. 

Department of Mathematics, Statistics and Computer Science, University of Illinois at Chicago, Chicago, IL 60607, United States

3. 

Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, Chicago, IL 60607, United States

Received  January 2011 Revised  August 2011 Published  February 2012

The water wave equations of ideal free-surface fluid mechanics are a fundamental model of open ocean movements with a surprisingly subtle well-posedness theory. In consequence of both theoretical and computational difficulties with the full water wave equations, various asymptotic approximations have been proposed, analyzed and used in practical situations. In this essay, we establish the well-posedness of a model system of water wave equations which is inspired by recent work of Dias, Dyachenko, and Zakharov (Phys. Lett. A, 372:2008). The model in question includes dissipative effects and is weakly nonlinear. The present contribution is a first step in a larger program centered around the Dias-Dychenko-Zhakharov system.
Citation: David M. Ambrose, Jerry L. Bona, David P. Nicholls. Well-posedness of a model for water waves with viscosity. Discrete & Continuous Dynamical Systems - B, 2012, 17 (4) : 1113-1137. doi: 10.3934/dcdsb.2012.17.1113
References:
[1]

David M. Ambrose and Nader Masmoudi, The zero surface tension limit of two-dimensional water waves,, Comm. Pure Appl. Math., 58 (2005), 1287. doi: 10.1002/cpa.20085. Google Scholar

[2]

David M. Ambrose, Well-posedness of vortex sheets with surface tension,, SIAM J. Math. Anal., 35 (2003), 211. doi: 10.1137/S0036141002403869. Google Scholar

[3]

Wooyoung Choi, Nonlinear evolution equations for two-dimensional surface waves in a fluid of finite depth,, Journal of Fluid Mechanics, 295 (1995), 381. doi: 10.1017/S0022112095002011. Google Scholar

[4]

R. Coifman and Y. Meyer, Nonlinear harmonic analysis and analytic dependence,, in, 43 (1985), 71. Google Scholar

[5]

Walter Craig and Catherine Sulem, Numerical simulation of gravity waves,, Journal of Computational Physics, 108 (1993), 73. doi: 10.1006/jcph.1993.1164. Google Scholar

[6]

Walter Craig, Ulrich Schanz and Catherine Sulem, The modulation regime of three-dimensional water waves and the Davey-Stewartson system,, Ann. Inst. Henri Poincaré, 14 (1997), 615. Google Scholar

[7]

F. Dias, A. I. Dyachenko and V. E. Zakharov, Theory of weakly damped free-surface flows: A new formulation based on potential flow solutions,, Phys. Lett. A, 372 (2008), 1297. doi: 10.1016/j.physleta.2007.09.027. Google Scholar

[8]

Maria Kakleas and David P. Nicholls, Numerical simulation of a weakly nonlinear model for water waves with viscosity,, Journal of Scientific Computing, 42 (2010), 274. doi: 10.1007/s10915-009-9324-y. Google Scholar

[9]

Horace Lamb, "Hydrodynamics,", Reprint of the 1932 sixth edition, (1932). Google Scholar

[10]

David Lannes, Well-posedness of the water-waves equations,, J. Amer. Math. Soc., 18 (2005), 605. doi: 10.1090/S0894-0347-05-00484-4. Google Scholar

[11]

Y Matsuno, Nonlinear evolutions of surface gravity waves of fluid of finite depth,, Physical Review Letters, 69 (1992), 609. doi: 10.1103/PhysRevLett.69.609. Google Scholar

[12]

Andrew J. Majda and Andrea L. Bertozzi, "Vorticity and Incompressible Flow," Cambridge Texts in Applied Mathematics, 27,, Cambridge University Press, (2002). Google Scholar

[13]

D. Michael Milder, An improved formalism for rough-surface scattering of acoustic and electromagnetic waves,, in, (1991), 213. Google Scholar

[14]

David P. Nicholls and Fernando Reitich, A new approach to analyticity of Dirichlet-Neumann operators,, Proc. Roy. Soc. Edinburgh Sect. A, 131 (2001), 1411. doi: 10.1017/S0308210500001463. Google Scholar

[15]

David P. Nicholls and Fernando Reitich, Analytic continuation of Dirichlet-Neumann operators,, Numer. Math., 94 (2003), 107. doi: 10.1007/s002110200399. Google Scholar

[16]

Sijue Wu, Well-posedness in Sobolev spaces of the full water wave problem in $2$-D,, Invent. Math., 130 (1997), 39. doi: 10.1007/s002220050177. Google Scholar

[17]

Sijue Wu, Well-posedness in Sobolev spaces of the full water wave problem in 3-D,, J. Amer. Math. Soc., 12 (1999), 445. doi: 10.1090/S0894-0347-99-00290-8. Google Scholar

[18]

Vladimir Zakharov, Stability of periodic waves of finite amplitude on the surface of a deep fluid,, Journal of Applied Mechanics and Technical Physics, 9 (1968), 190. doi: 10.1007/BF00913182. Google Scholar

show all references

References:
[1]

David M. Ambrose and Nader Masmoudi, The zero surface tension limit of two-dimensional water waves,, Comm. Pure Appl. Math., 58 (2005), 1287. doi: 10.1002/cpa.20085. Google Scholar

[2]

David M. Ambrose, Well-posedness of vortex sheets with surface tension,, SIAM J. Math. Anal., 35 (2003), 211. doi: 10.1137/S0036141002403869. Google Scholar

[3]

Wooyoung Choi, Nonlinear evolution equations for two-dimensional surface waves in a fluid of finite depth,, Journal of Fluid Mechanics, 295 (1995), 381. doi: 10.1017/S0022112095002011. Google Scholar

[4]

R. Coifman and Y. Meyer, Nonlinear harmonic analysis and analytic dependence,, in, 43 (1985), 71. Google Scholar

[5]

Walter Craig and Catherine Sulem, Numerical simulation of gravity waves,, Journal of Computational Physics, 108 (1993), 73. doi: 10.1006/jcph.1993.1164. Google Scholar

[6]

Walter Craig, Ulrich Schanz and Catherine Sulem, The modulation regime of three-dimensional water waves and the Davey-Stewartson system,, Ann. Inst. Henri Poincaré, 14 (1997), 615. Google Scholar

[7]

F. Dias, A. I. Dyachenko and V. E. Zakharov, Theory of weakly damped free-surface flows: A new formulation based on potential flow solutions,, Phys. Lett. A, 372 (2008), 1297. doi: 10.1016/j.physleta.2007.09.027. Google Scholar

[8]

Maria Kakleas and David P. Nicholls, Numerical simulation of a weakly nonlinear model for water waves with viscosity,, Journal of Scientific Computing, 42 (2010), 274. doi: 10.1007/s10915-009-9324-y. Google Scholar

[9]

Horace Lamb, "Hydrodynamics,", Reprint of the 1932 sixth edition, (1932). Google Scholar

[10]

David Lannes, Well-posedness of the water-waves equations,, J. Amer. Math. Soc., 18 (2005), 605. doi: 10.1090/S0894-0347-05-00484-4. Google Scholar

[11]

Y Matsuno, Nonlinear evolutions of surface gravity waves of fluid of finite depth,, Physical Review Letters, 69 (1992), 609. doi: 10.1103/PhysRevLett.69.609. Google Scholar

[12]

Andrew J. Majda and Andrea L. Bertozzi, "Vorticity and Incompressible Flow," Cambridge Texts in Applied Mathematics, 27,, Cambridge University Press, (2002). Google Scholar

[13]

D. Michael Milder, An improved formalism for rough-surface scattering of acoustic and electromagnetic waves,, in, (1991), 213. Google Scholar

[14]

David P. Nicholls and Fernando Reitich, A new approach to analyticity of Dirichlet-Neumann operators,, Proc. Roy. Soc. Edinburgh Sect. A, 131 (2001), 1411. doi: 10.1017/S0308210500001463. Google Scholar

[15]

David P. Nicholls and Fernando Reitich, Analytic continuation of Dirichlet-Neumann operators,, Numer. Math., 94 (2003), 107. doi: 10.1007/s002110200399. Google Scholar

[16]

Sijue Wu, Well-posedness in Sobolev spaces of the full water wave problem in $2$-D,, Invent. Math., 130 (1997), 39. doi: 10.1007/s002220050177. Google Scholar

[17]

Sijue Wu, Well-posedness in Sobolev spaces of the full water wave problem in 3-D,, J. Amer. Math. Soc., 12 (1999), 445. doi: 10.1090/S0894-0347-99-00290-8. Google Scholar

[18]

Vladimir Zakharov, Stability of periodic waves of finite amplitude on the surface of a deep fluid,, Journal of Applied Mechanics and Technical Physics, 9 (1968), 190. doi: 10.1007/BF00913182. Google Scholar

[1]

Daniel Coutand, Steve Shkoller. A simple proof of well-posedness for the free-surface incompressible Euler equations. Discrete & Continuous Dynamical Systems - S, 2010, 3 (3) : 429-449. doi: 10.3934/dcdss.2010.3.429

[2]

Vera Mikyoung Hur. On the formation of singularities for surface water waves. Communications on Pure & Applied Analysis, 2012, 11 (4) : 1465-1474. doi: 10.3934/cpaa.2012.11.1465

[3]

Yoshihiro Shibata. Global well-posedness of unsteady motion of viscous incompressible capillary liquid bounded by a free surface. Evolution Equations & Control Theory, 2018, 7 (1) : 117-152. doi: 10.3934/eect.2018007

[4]

Yoshihiro Shibata. Local well-posedness of free surface problems for the Navier-Stokes equations in a general domain. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 315-342. doi: 10.3934/dcdss.2016.9.315

[5]

Mei Wang, Zilai Li, Zhenhua Guo. Global weak solution to 3D compressible flows with density-dependent viscosity and free boundary. Communications on Pure & Applied Analysis, 2017, 16 (1) : 1-24. doi: 10.3934/cpaa.2017001

[6]

Elena Kartashova. Nonlinear resonances of water waves. Discrete & Continuous Dynamical Systems - B, 2009, 12 (3) : 607-621. doi: 10.3934/dcdsb.2009.12.607

[7]

Calin Iulian Martin. A Hamiltonian approach for nonlinear rotational capillary-gravity water waves in stratified flows. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 387-404. doi: 10.3934/dcds.2017016

[8]

Jun-ichi Segata. Well-posedness and existence of standing waves for the fourth order nonlinear Schrödinger type equation. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 1093-1105. doi: 10.3934/dcds.2010.27.1093

[9]

Calin Iulian Martin. Dispersion relations for periodic water waves with surface tension and discontinuous vorticity. Discrete & Continuous Dynamical Systems - A, 2014, 34 (8) : 3109-3123. doi: 10.3934/dcds.2014.34.3109

[10]

Boris P. Andreianov, Giuseppe Maria Coclite, Carlotta Donadello. Well-posedness for vanishing viscosity solutions of scalar conservation laws on a network. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5913-5942. doi: 10.3934/dcds.2017257

[11]

Zhaoyang Yin. Well-posedness, blowup, and global existence for an integrable shallow water equation. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 393-411. doi: 10.3934/dcds.2004.11.393

[12]

Pavel Krejčí, Elisabetta Rocca. Well-posedness of an extended model for water-ice phase transitions. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 439-460. doi: 10.3934/dcdss.2013.6.439

[13]

Ping Chen, Daoyuan Fang, Ting Zhang. Free boundary problem for compressible flows with density--dependent viscosity coefficients. Communications on Pure & Applied Analysis, 2011, 10 (2) : 459-478. doi: 10.3934/cpaa.2011.10.459

[14]

Yu Chen, Yanheng Ding, Tian Xu. Potential well and multiplicity of solutions for nonlinear Dirac equations. Communications on Pure & Applied Analysis, 2020, 19 (1) : 587-607. doi: 10.3934/cpaa.2020028

[15]

Adrian Constantin. Dispersion relations for periodic traveling water waves in flows with discontinuous vorticity. Communications on Pure & Applied Analysis, 2012, 11 (4) : 1397-1406. doi: 10.3934/cpaa.2012.11.1397

[16]

Xiaoli Li, Boling Guo. Well-posedness for the three-dimensional compressible liquid crystal flows. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1913-1937. doi: 10.3934/dcdss.2016078

[17]

David Henry, Rossen Ivanov. One-dimensional weakly nonlinear model equations for Rossby waves. Discrete & Continuous Dynamical Systems - A, 2014, 34 (8) : 3025-3034. doi: 10.3934/dcds.2014.34.3025

[18]

Saoussen Sokrani. On the global well-posedness of 3-D Boussinesq system with partial viscosity and axisymmetric data. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 1613-1650. doi: 10.3934/dcds.2019072

[19]

Cédric Galusinski, Mazen Saad. A nonlinear degenerate system modelling water-gas flows in porous media. Discrete & Continuous Dynamical Systems - B, 2008, 9 (2) : 281-308. doi: 10.3934/dcdsb.2008.9.281

[20]

R. S. Johnson. A selection of nonlinear problems in water waves, analysed by perturbation-parameter techniques. Communications on Pure & Applied Analysis, 2012, 11 (4) : 1497-1522. doi: 10.3934/cpaa.2012.11.1497

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (5)

[Back to Top]