June  2012, 17(4): 1101-1112. doi: 10.3934/dcdsb.2012.17.1101

Vorticity jumps in steady water waves

1. 

Brown University, Department of Mathematics and Lefschetz Center for Dynamical Systems, Providence, RI 02912, United States

Received  December 2010 Revised  September 2011 Published  February 2012

There exists a large family of water waves with jump discontinuities in the vorticity. These waves travel at a constant speed. They are two-dimensional, periodic, symmetric, and subject to the influence of gravity. Some of them have large amplitudes. Their existence is proven using local and global bifurcation theory, together with elliptic theory of weak solutions with nonlinear boundary conditions.
Citation: Walter A. Strauss. Vorticity jumps in steady water waves. Discrete & Continuous Dynamical Systems - B, 2012, 17 (4) : 1101-1112. doi: 10.3934/dcdsb.2012.17.1101
References:
[1]

J. T. Beale, The existence of solitary water waves,, Comm. Pure Appl. Math., 30 (1977), 373. doi: 10.1002/cpa.3160300402.

[2]

B. Buffoni and J. F. Toland, "Analytic Theory of Global Bifurcation. An Introduction,", Princeton Series in Applied Mathematics, (2003).

[3]

A. Constantin and W. Strauss, Exact steady periodic water waves with vorticity,, Comm. Pure Appl. Math., 57 (2004), 481. doi: 10.1002/cpa.3046.

[4]

A. Constantin and W. Strauss, Periodic traveling gravity waves with discontinuous vorticity,, Arch. Ration. Mech. Anal., 202 (2011), 133. doi: 10.1007/s00205-011-0412-4.

[5]

R. Finn and D. Gilbarg, Asymptotic behavior and uniqueness of plane subsonic flows,, Comm. Pure Appl. Math., 10 (1957), 23.

[6]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Reprint of the 1998 edition, (1998).

[7]

T. Healey and H. Simpson, Global continuation in nonlinear elasticity,, Arch. Ration. Mech. Anal., 143 (1998), 1. doi: 10.1007/s002050050098.

[8]

G. M. Lieberman, The nonlinear oblique derivative problem for quasilinear elliptic equations,, Nonlinear Anal., 8 (1984), 49. doi: 10.1016/0362-546X(84)90027-0.

[9]

J. Ko and W. Strauss, Large-amplitude steady rotational water waves,, Europ. J. Mech. B Fluids, 27 (2007), 96. doi: 10.1016/j.euromechflu.2007.04.004.

[10]

J. Ko and W. Strauss, Effect of vorticity on steady water waves,, J. Fluid Mech., 608 (2008), 197. doi: 10.1017/S0022112008002371.

[11]

O. M. Philllips and M. L. Banner, Wave breaking in presence of wind drift and swell,, J. Fluid Mech., 66 (1974), 625. doi: 10.1017/S0022112074000413.

[12]

J. Serrin, A symmetry theorem in potential theory,, Arch. Ration. Mech. Anal., 43 (1971), 304. doi: 10.1007/BF00250468.

[13]

W. Strauss, Steady water waves,, Bull. Amer. Math. Soc. (N.S.), 47 (2010), 671.

[14]

S. Walsh, Stratified and steady periodic gravity waves,, SIAM J. Math. Anal., 41 (2009), 1054. doi: 10.1137/080721583.

[15]

S. Walsh, Steady periodic gravity waves with surface tension,, preprint, ().

show all references

References:
[1]

J. T. Beale, The existence of solitary water waves,, Comm. Pure Appl. Math., 30 (1977), 373. doi: 10.1002/cpa.3160300402.

[2]

B. Buffoni and J. F. Toland, "Analytic Theory of Global Bifurcation. An Introduction,", Princeton Series in Applied Mathematics, (2003).

[3]

A. Constantin and W. Strauss, Exact steady periodic water waves with vorticity,, Comm. Pure Appl. Math., 57 (2004), 481. doi: 10.1002/cpa.3046.

[4]

A. Constantin and W. Strauss, Periodic traveling gravity waves with discontinuous vorticity,, Arch. Ration. Mech. Anal., 202 (2011), 133. doi: 10.1007/s00205-011-0412-4.

[5]

R. Finn and D. Gilbarg, Asymptotic behavior and uniqueness of plane subsonic flows,, Comm. Pure Appl. Math., 10 (1957), 23.

[6]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Reprint of the 1998 edition, (1998).

[7]

T. Healey and H. Simpson, Global continuation in nonlinear elasticity,, Arch. Ration. Mech. Anal., 143 (1998), 1. doi: 10.1007/s002050050098.

[8]

G. M. Lieberman, The nonlinear oblique derivative problem for quasilinear elliptic equations,, Nonlinear Anal., 8 (1984), 49. doi: 10.1016/0362-546X(84)90027-0.

[9]

J. Ko and W. Strauss, Large-amplitude steady rotational water waves,, Europ. J. Mech. B Fluids, 27 (2007), 96. doi: 10.1016/j.euromechflu.2007.04.004.

[10]

J. Ko and W. Strauss, Effect of vorticity on steady water waves,, J. Fluid Mech., 608 (2008), 197. doi: 10.1017/S0022112008002371.

[11]

O. M. Philllips and M. L. Banner, Wave breaking in presence of wind drift and swell,, J. Fluid Mech., 66 (1974), 625. doi: 10.1017/S0022112074000413.

[12]

J. Serrin, A symmetry theorem in potential theory,, Arch. Ration. Mech. Anal., 43 (1971), 304. doi: 10.1007/BF00250468.

[13]

W. Strauss, Steady water waves,, Bull. Amer. Math. Soc. (N.S.), 47 (2010), 671.

[14]

S. Walsh, Stratified and steady periodic gravity waves,, SIAM J. Math. Anal., 41 (2009), 1054. doi: 10.1137/080721583.

[15]

S. Walsh, Steady periodic gravity waves with surface tension,, preprint, ().

[1]

Delia Ionescu-Kruse. Elliptic and hyperelliptic functions describing the particle motion beneath small-amplitude water waves with constant vorticity. Communications on Pure & Applied Analysis, 2012, 11 (4) : 1475-1496. doi: 10.3934/cpaa.2012.11.1475

[2]

Jifeng Chu, Joachim Escher. Steady periodic equatorial water waves with vorticity. Discrete & Continuous Dynamical Systems - A, 2019, 39 (8) : 4713-4729. doi: 10.3934/dcds.2019191

[3]

Elena Kartashova. Nonlinear resonances of water waves. Discrete & Continuous Dynamical Systems - B, 2009, 12 (3) : 607-621. doi: 10.3934/dcdsb.2009.12.607

[4]

Adrian Constantin. Dispersion relations for periodic traveling water waves in flows with discontinuous vorticity. Communications on Pure & Applied Analysis, 2012, 11 (4) : 1397-1406. doi: 10.3934/cpaa.2012.11.1397

[5]

Mats Ehrnström. Deep-water waves with vorticity: symmetry and rotational behaviour. Discrete & Continuous Dynamical Systems - A, 2007, 19 (3) : 483-491. doi: 10.3934/dcds.2007.19.483

[6]

Calin Iulian Martin. Dispersion relations for periodic water waves with surface tension and discontinuous vorticity. Discrete & Continuous Dynamical Systems - A, 2014, 34 (8) : 3109-3123. doi: 10.3934/dcds.2014.34.3109

[7]

Silvia Sastre-Gomez. Equivalent formulations for steady periodic water waves of fixed mean-depth with discontinuous vorticity. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2669-2680. doi: 10.3934/dcds.2017114

[8]

Delia Ionescu-Kruse, Anca-Voichita Matioc. Small-amplitude equatorial water waves with constant vorticity: Dispersion relations and particle trajectories. Discrete & Continuous Dynamical Systems - A, 2014, 34 (8) : 3045-3060. doi: 10.3934/dcds.2014.34.3045

[9]

Denys Dutykh, Delia Ionescu-Kruse. Effects of vorticity on the travelling waves of some shallow water two-component systems. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 5521-5541. doi: 10.3934/dcds.2019225

[10]

R. S. Johnson. A selection of nonlinear problems in water waves, analysed by perturbation-parameter techniques. Communications on Pure & Applied Analysis, 2012, 11 (4) : 1497-1522. doi: 10.3934/cpaa.2012.11.1497

[11]

Octavian G. Mustafa. On isolated vorticity regions beneath the water surface. Communications on Pure & Applied Analysis, 2012, 11 (4) : 1523-1535. doi: 10.3934/cpaa.2012.11.1523

[12]

Robert McOwen, Peter Topalov. Asymptotics in shallow water waves. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 3103-3131. doi: 10.3934/dcds.2015.35.3103

[13]

Hung Le. Elliptic equations with transmission and Wentzell boundary conditions and an application to steady water waves in the presence of wind. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3357-3385. doi: 10.3934/dcds.2018144

[14]

Calin Iulian Martin. A Hamiltonian approach for nonlinear rotational capillary-gravity water waves in stratified flows. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 387-404. doi: 10.3934/dcds.2017016

[15]

Vera Mikyoung Hur. On the formation of singularities for surface water waves. Communications on Pure & Applied Analysis, 2012, 11 (4) : 1465-1474. doi: 10.3934/cpaa.2012.11.1465

[16]

Jerry L. Bona, Henrik Kalisch. Models for internal waves in deep water. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 1-20. doi: 10.3934/dcds.2000.6.1

[17]

Martina Chirilus-Bruckner, Guido Schneider. Interaction of oscillatory packets of water waves. Conference Publications, 2015, 2015 (special) : 267-275. doi: 10.3934/proc.2015.0267

[18]

Philippe Bonneton, Nicolas Bruneau, Bruno Castelle, Fabien Marche. Large-scale vorticity generation due to dissipating waves in the surf zone. Discrete & Continuous Dynamical Systems - B, 2010, 13 (4) : 729-738. doi: 10.3934/dcdsb.2010.13.729

[19]

Vincent Duchêne, Samer Israwi, Raafat Talhouk. Shallow water asymptotic models for the propagation of internal waves. Discrete & Continuous Dynamical Systems - S, 2014, 7 (2) : 239-269. doi: 10.3934/dcdss.2014.7.239

[20]

Anca-Voichita Matioc. On particle trajectories in linear deep-water waves. Communications on Pure & Applied Analysis, 2012, 11 (4) : 1537-1547. doi: 10.3934/cpaa.2012.11.1537

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]