September  2011, 16(2): 529-545. doi: 10.3934/dcdsb.2011.16.529

Firing control of ink gland motor cells in Aplysia californica

1. 

Department of Dynamics and Control, Beihang University, Beijing 100191, China

2. 

Mathematical and Computational Department, Anhui Huainan Normal University, Anhui, 232007, China

3. 

Center for Neural Science and Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, United States

Received  April 2010 Revised  November 2010 Published  June 2011

The release of ink in Aplysia californica occurs selectively to long-lasting stimuli. There is a good correspondence between features of the behavior and the firing pattern of the ink gland motor neurons. Indeed, the neurons do not fire for brief inputs and there is a delayed firing for long duration inputs. The biophysical mechanisms for the long delay before firing is due to a transient potassium current which activates rapidly but inactivates more slowly. Based on voltage-clamp experiments, a nine-variable Hodgkin-Huxley-like model for the ink gland motor neurons was developed by Byrne. Here, fast-slow analysis and two-parameter dynamical analysis are used to investigate the contribution of different currents and to predict various firing patterns, including the long latency before firing.
Citation: Xiangying Meng, Quanbao Ji, John Rinzel. Firing control of ink gland motor cells in Aplysia californica. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 529-545. doi: 10.3934/dcdsb.2011.16.529
References:
[1]

P. Dayan and L. F. Abbott, "Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems,", MIT Press, (2001). Google Scholar

[2]

Q. S. Lu, H. G. Gu, Z. Q Yang, X. Shi, L. X. Duan and Y. H. Zheng, Dynamics of firing patterns, synchronization and resonances in neuronal electrical activities: experiments and analysis,, Acta Mech. Sin., 24 (2008), 593. Google Scholar

[3]

A. L. Hodgkin and A. F. Huxley, A quantitative description of membrane current and its application to conduction in nerve,, J. Physiol. Lond., 117 (1952), 500. Google Scholar

[4]

J. Rinzel, Bursting oscillation in an excitable membrane model,, In, (1987), 267. Google Scholar

[5]

J. H. Byrne, Analysis of ionic conductance mechanisms in motor cells mediating inking behavior in aplysia californica,, J. Neurophysiol., 43 (1980), 630. Google Scholar

[6]

J. H. Byrne, Quantitative aspects of ionic conductance mechanisms contributing to firing pattern of motor cells mediating inking behavior in aplysia californica,, J. Neurophysiol., 43 (1980), 651. Google Scholar

[7]

J. H. Byrne, Simulation of the neural activity underlying a short-term modification of inking behavior in aplysis,, Brain Res., 204 (1981), 200. Google Scholar

[8]

D. Golomb, K. Donner, L. Shacham, D. Shiosberg, Y. Amital, Y. and D. Hansel, Mechanisms of firing patterns in fast-spiking cortical interneurons,, PLos Comp. Biol., 3 (2007), 1498. Google Scholar

[9]

J. A. Connor, D. Walter and R. McKown, Neural repetitive firing, Modifications of the Hodgkin-Huxley axon suggested by experimental results from crustacean axons,, Biophys. J., 18 (1977), 81. Google Scholar

[10]

M. E. Rush and J. Rinzel, The potassium A-current, low firing rates and rebound excitation in hodgin-huxley models,, Bulletin of Mathematical Biology, 57 (1995), 899. Google Scholar

[11]

J. Rothman and P. B. Manis, The roles potassium currents play in regulating the electrical activity of ventral cochlear nucleus neurons,, J. Neurophysiol., 89 (2003), 3097. Google Scholar

[12]

P. O. Kanold, and P. B. Manis, A physiologically based model of discharge pattern regulation by transient K currents in cochlear nucleus pyramidal cells,, J. Neurophysiol., 85 (2001), 523. Google Scholar

[13]

X. Y. Meng, Q. S. Lu and J. Rinzel, Control of firing patterns by two transient potassium currents: leading spike, latency, bistability,, J. Computl. Neurosci., (). Google Scholar

[14]

J. F. Storm, Temporal integration by a slowly inactivating $K$+ current in hippocampal neurons,, Nature, 336 (1988), 379. Google Scholar

[15]

P. B. Manis, Membrane properties and discharge characteristics of guinea pig dorsal cochlear nucleus neurons studied in vitro,, J. Neurosci., 10 (1990), 2338. Google Scholar

[16]

W. S. Rhode, P. H. Smith and D. Oertel, Physiological response properties of cells labeled intracellularly with horseradish peroxidase in cat dorsal cochlear nucleus,, J. Comparative Neurol., 213 (1983), 426. Google Scholar

[17]

T. J. Carew and E. R. Kandel, Inking in Aplysia californica. I. Neural circuit of an all-or-none behavioral response,, J. Neurophysiol., 40 (1977), 692. Google Scholar

[18]

E. Shapiro, J. Koester and J. H. Byrne, Aplysia ink release: locus of selective sensitivity to long-duration stimuli,, J. Neurophysiol., 42 (1979), 1223. Google Scholar

show all references

References:
[1]

P. Dayan and L. F. Abbott, "Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems,", MIT Press, (2001). Google Scholar

[2]

Q. S. Lu, H. G. Gu, Z. Q Yang, X. Shi, L. X. Duan and Y. H. Zheng, Dynamics of firing patterns, synchronization and resonances in neuronal electrical activities: experiments and analysis,, Acta Mech. Sin., 24 (2008), 593. Google Scholar

[3]

A. L. Hodgkin and A. F. Huxley, A quantitative description of membrane current and its application to conduction in nerve,, J. Physiol. Lond., 117 (1952), 500. Google Scholar

[4]

J. Rinzel, Bursting oscillation in an excitable membrane model,, In, (1987), 267. Google Scholar

[5]

J. H. Byrne, Analysis of ionic conductance mechanisms in motor cells mediating inking behavior in aplysia californica,, J. Neurophysiol., 43 (1980), 630. Google Scholar

[6]

J. H. Byrne, Quantitative aspects of ionic conductance mechanisms contributing to firing pattern of motor cells mediating inking behavior in aplysia californica,, J. Neurophysiol., 43 (1980), 651. Google Scholar

[7]

J. H. Byrne, Simulation of the neural activity underlying a short-term modification of inking behavior in aplysis,, Brain Res., 204 (1981), 200. Google Scholar

[8]

D. Golomb, K. Donner, L. Shacham, D. Shiosberg, Y. Amital, Y. and D. Hansel, Mechanisms of firing patterns in fast-spiking cortical interneurons,, PLos Comp. Biol., 3 (2007), 1498. Google Scholar

[9]

J. A. Connor, D. Walter and R. McKown, Neural repetitive firing, Modifications of the Hodgkin-Huxley axon suggested by experimental results from crustacean axons,, Biophys. J., 18 (1977), 81. Google Scholar

[10]

M. E. Rush and J. Rinzel, The potassium A-current, low firing rates and rebound excitation in hodgin-huxley models,, Bulletin of Mathematical Biology, 57 (1995), 899. Google Scholar

[11]

J. Rothman and P. B. Manis, The roles potassium currents play in regulating the electrical activity of ventral cochlear nucleus neurons,, J. Neurophysiol., 89 (2003), 3097. Google Scholar

[12]

P. O. Kanold, and P. B. Manis, A physiologically based model of discharge pattern regulation by transient K currents in cochlear nucleus pyramidal cells,, J. Neurophysiol., 85 (2001), 523. Google Scholar

[13]

X. Y. Meng, Q. S. Lu and J. Rinzel, Control of firing patterns by two transient potassium currents: leading spike, latency, bistability,, J. Computl. Neurosci., (). Google Scholar

[14]

J. F. Storm, Temporal integration by a slowly inactivating $K$+ current in hippocampal neurons,, Nature, 336 (1988), 379. Google Scholar

[15]

P. B. Manis, Membrane properties and discharge characteristics of guinea pig dorsal cochlear nucleus neurons studied in vitro,, J. Neurosci., 10 (1990), 2338. Google Scholar

[16]

W. S. Rhode, P. H. Smith and D. Oertel, Physiological response properties of cells labeled intracellularly with horseradish peroxidase in cat dorsal cochlear nucleus,, J. Comparative Neurol., 213 (1983), 426. Google Scholar

[17]

T. J. Carew and E. R. Kandel, Inking in Aplysia californica. I. Neural circuit of an all-or-none behavioral response,, J. Neurophysiol., 40 (1977), 692. Google Scholar

[18]

E. Shapiro, J. Koester and J. H. Byrne, Aplysia ink release: locus of selective sensitivity to long-duration stimuli,, J. Neurophysiol., 42 (1979), 1223. Google Scholar

[1]

Daniele Andreucci, Dario Bellaveglia, Emilio N.M. Cirillo, Silvia Marconi. Effect of intracellular diffusion on current--voltage curves in potassium channels. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1837-1853. doi: 10.3934/dcdsb.2014.19.1837

[2]

Emile Franc Doungmo Goufo, Melusi Khumalo, Patrick M. Tchepmo Djomegni. Perturbations of Hindmarsh-Rose neuron dynamics by fractional operators: Bifurcation, firing and chaotic bursts. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 663-682. doi: 10.3934/dcdss.2020036

[3]

Lin Wang, James Watmough, Fang Yu. Bifurcation analysis and transient spatio-temporal dynamics for a diffusive plant-herbivore system with Dirichlet boundary conditions. Mathematical Biosciences & Engineering, 2015, 12 (4) : 699-715. doi: 10.3934/mbe.2015.12.699

[4]

Josselin Garnier, George Papanicolaou, Tzu-Wei Yang. Mean field model for collective motion bistability. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 851-879. doi: 10.3934/dcdsb.2018210

[5]

Jonathan P. Desi, Evelyn Sander, Thomas Wanner. Complex transient patterns on the disk. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1049-1078. doi: 10.3934/dcds.2006.15.1049

[6]

Diogo Poças, Bartosz Protas. Transient growth in stochastic Burgers flows. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2371-2391. doi: 10.3934/dcdsb.2018052

[7]

Iryna Sushko, Anna Agliari, Laura Gardini. Bistability and border-collision bifurcations for a family of unimodal piecewise smooth maps. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 881-897. doi: 10.3934/dcdsb.2005.5.881

[8]

George Dassios, Michalis N. Tsampas. Vector ellipsoidal harmonics and neuronal current decomposition in the brain. Inverse Problems & Imaging, 2009, 3 (2) : 243-257. doi: 10.3934/ipi.2009.3.243

[9]

Stefano Cosenza, Paolo Crucitti, Luigi Fortuna, Mattia Frasca, Manuela La Rosa, Cecilia Stagni, Lisa Usai. From Net Topology to Synchronization in HR Neuron Grids. Mathematical Biosciences & Engineering, 2005, 2 (1) : 53-77. doi: 10.3934/mbe.2005.2.53

[10]

Hung-Chu Hsu. Exact azimuthal internal waves with an underlying current. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4391-4398. doi: 10.3934/dcds.2017188

[11]

Feng Zhang, Alice Lubbe, Qishao Lu, Jianzhong Su. On bursting solutions near chaotic regimes in a neuron model. Discrete & Continuous Dynamical Systems - S, 2014, 7 (6) : 1363-1383. doi: 10.3934/dcdss.2014.7.1363

[12]

Sharif E. Guseynov, Eugene A. Kopytov, Edvin Puzinkevich. On continuous models of current stock of divisible productions. Conference Publications, 2011, 2011 (Special) : 601-613. doi: 10.3934/proc.2011.2011.601

[13]

Shinji Nakaoka, Hisashi Inaba. Demographic modeling of transient amplifying cell population growth. Mathematical Biosciences & Engineering, 2014, 11 (2) : 363-384. doi: 10.3934/mbe.2014.11.363

[14]

Holger Heumann, Ralf Hiptmair, Cecilia Pagliantini. Stabilized Galerkin for transient advection of differential forms. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 185-214. doi: 10.3934/dcdss.2016.9.185

[15]

Marissa Condon, Alfredo Deaño, Arieh Iserles. On systems of differential equations with extrinsic oscillation. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1345-1367. doi: 10.3934/dcds.2010.28.1345

[16]

Carlos Montalto, Alexandru Tamasan. Stability in conductivity imaging from partial measurements of one interior current. Inverse Problems & Imaging, 2017, 11 (2) : 339-353. doi: 10.3934/ipi.2017016

[17]

Hiroyuki Torikai. Basic spike-train properties of a digital spiking neuron. Discrete & Continuous Dynamical Systems - B, 2008, 9 (1) : 183-198. doi: 10.3934/dcdsb.2008.9.183

[18]

Gaël Bonithon. Landau-Lifschitz-Gilbert equation with applied eletric current. Conference Publications, 2007, 2007 (Special) : 138-144. doi: 10.3934/proc.2007.2007.138

[19]

Frank Jochmann. A variational inequality in Bean's model for superconductors with displacement current. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 545-565. doi: 10.3934/dcds.2009.25.545

[20]

Fredi Tröltzsch, Alberto Valli. Optimal voltage control of non-stationary eddy current problems. Mathematical Control & Related Fields, 2018, 8 (1) : 35-56. doi: 10.3934/mcrf.2018002

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]