July  2011, 16(1): 319-332. doi: 10.3934/dcdsb.2011.16.319

Vanishing singularity in hard impacting systems

1. 

Electrical Engineering and Computer Science Department, University of Michigan, Ann Arbor, United States

2. 

Department of Physical Sciences, Indian Institute of Science Education & Research, Mohanpur-741252, Nadia, West Bengal, India

3. 

School of Electrical, Electronic and Computer Engineering, Newcastle University, NE1 7RU, England, United Kingdom

Received  February 2010 Revised  June 2010 Published  April 2011

It is known that the Jacobian of the discrete-time map of an impact oscillator in the neighborhood of a grazing orbit depends on the square-root of the distance the mass would have gone beyond the position of the wall if the wall were not there. This results in an infinite stretching of the phase space, known as the square-root singularity. In this paper we look closer into the Jacobian matrix and find out the behavior of its two parameters---the trace and the determinant, across the grazing event. We show that the determinant of the matrix remains invariant in the neighborhood of a grazing orbit, and that the singularity appears only in the trace of the matrix. Investigating the character of the trace, we show that the singularity disappears if the damped frequency of the oscillator is an integral multiple of half of the forcing frequency.
Citation: Soumya Kundu, Soumitro Banerjee, Damian Giaouris. Vanishing singularity in hard impacting systems. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 319-332. doi: 10.3934/dcdsb.2011.16.319
References:
[1]

S. W. Shaw and P. J. Holmes, A periodically forced piecewise linear oscillator,, Journal of Sound & Vibration, 90 (1983), 129. doi: 10.1016/0022-460X(83)90407-8. Google Scholar

[2]

F. Peterka and J. Vacik, Transition to chaotic motion in mechanical systems with impacts,, Journal of Sound and Vibration, 154 (1992), 95. doi: 10.1016/0022-460X(92)90406-N. Google Scholar

[3]

B. Blazejczyk-Okolewska and T. Kapitaniak, Co-existing attractors of impact oscillator,, Chaos, 9 (1998), 1439. doi: 10.1016/S0960-0779(98)00164-7. Google Scholar

[4]

S. Lenci and G. Rega, A procedure for reducing the chaotic response region in an impact mechanical system,, Nonlinear Dynamics, 15 (1998), 391. doi: 10.1023/A:1008209513877. Google Scholar

[5]

D. J. Wagg, G. Karpodinis and S. R. Bishop, An experimental study of the impulse response of a vibro-impacting cantilever beam,, Journal of Sound & Vibration, 228 (1999), 243. doi: 10.1006/jsvi.1999.2318. Google Scholar

[6]

E. K. Ervin and J. A. Wickert, Experiments on a beam-rigid body structure repetitively impacting a rod,, Nonlinear Dynamics, 50 (2007), 701. doi: 10.1007/s11071-006-9180-3. Google Scholar

[7]

J. Ing, E. Pavlovskaia and M. Wiercigroch, An experimental study into the bilinear oscillator close to grazing,, In, 96 (2007). Google Scholar

[8]

A. B. Nordmark, Non-periodic motion caused by grazing incidence in an impact oscillator,, Journal of Sound and Vibration, 145 (1991), 279. doi: 10.1016/0022-460X(91)90592-8. Google Scholar

[9]

A. B. Nordmark, Universal limit mapping in grazing bifurcations,, Phys. Rev. E, 55 (1997), 266. doi: 10.1103/PhysRevE.55.266. Google Scholar

[10]

M. di Bernardo, C. J. Budd, A. R. Champneys and P. Kowalczyk, "Piecewise-smooth Dynamical Systems: Theory and Applications,", Springer Verlag (Applied Mathematical Sciences), (2008). Google Scholar

[11]

Y. Ma, M. Agarwal and S. Banerjee, Border collision bifurcations in a soft impact system,, Physics Letters A, 354 (2006), 281. doi: 10.1016/j.physleta.2006.01.025. Google Scholar

[12]

Y. Ma, J. Ing, S. Banerjee, M. Wiercigroch and E. Pavlovskaia, The nature of the normal form map for soft impacting systems,, International Journal of Nonlinear Mechanics, 43 (2008), 504. doi: 10.1016/j.ijnonlinmec.2008.04.001. Google Scholar

[13]

J. Ing, E. Pavlovskaia, M. Wiercigroch and S. Banerjee, Experimental study of impact oscillator with one-sided elastic constraint,, Philosophical Transactions of the Royal Society of London, 366 (2008), 679. Google Scholar

[14]

R. I. Leine and H. Nijmeijer, "Dynamics and Bifurcations in Non-Smooth Mechanical Systems,", Springer Verlag, (2004). Google Scholar

[15]

S. Banerjee and C. Grebogi, Border collision bifurcations in two-dimensional piecewise smooth maps,, Physical Review E, 59 (1999), 4052. doi: 10.1103/PhysRevE.59.4052. Google Scholar

[16]

S. Banerjee, P. Ranjan and C. Grebogi, Bifurcations in two-dimensional piecewise smooth maps -- theory and applications in switching circuits,, IEEE Transactions on Circuits and Systems-I, 47 (2000), 633. doi: 10.1109/81.847870. Google Scholar

[17]

H. Dankowicz and F. Svahn, On the stabilizability of near-grazing dynamics in impact oscillators,, Int. J. Robust & Nonlinear Control, 17 (2007), 1405. doi: 10.1002/rnc.1252. Google Scholar

show all references

References:
[1]

S. W. Shaw and P. J. Holmes, A periodically forced piecewise linear oscillator,, Journal of Sound & Vibration, 90 (1983), 129. doi: 10.1016/0022-460X(83)90407-8. Google Scholar

[2]

F. Peterka and J. Vacik, Transition to chaotic motion in mechanical systems with impacts,, Journal of Sound and Vibration, 154 (1992), 95. doi: 10.1016/0022-460X(92)90406-N. Google Scholar

[3]

B. Blazejczyk-Okolewska and T. Kapitaniak, Co-existing attractors of impact oscillator,, Chaos, 9 (1998), 1439. doi: 10.1016/S0960-0779(98)00164-7. Google Scholar

[4]

S. Lenci and G. Rega, A procedure for reducing the chaotic response region in an impact mechanical system,, Nonlinear Dynamics, 15 (1998), 391. doi: 10.1023/A:1008209513877. Google Scholar

[5]

D. J. Wagg, G. Karpodinis and S. R. Bishop, An experimental study of the impulse response of a vibro-impacting cantilever beam,, Journal of Sound & Vibration, 228 (1999), 243. doi: 10.1006/jsvi.1999.2318. Google Scholar

[6]

E. K. Ervin and J. A. Wickert, Experiments on a beam-rigid body structure repetitively impacting a rod,, Nonlinear Dynamics, 50 (2007), 701. doi: 10.1007/s11071-006-9180-3. Google Scholar

[7]

J. Ing, E. Pavlovskaia and M. Wiercigroch, An experimental study into the bilinear oscillator close to grazing,, In, 96 (2007). Google Scholar

[8]

A. B. Nordmark, Non-periodic motion caused by grazing incidence in an impact oscillator,, Journal of Sound and Vibration, 145 (1991), 279. doi: 10.1016/0022-460X(91)90592-8. Google Scholar

[9]

A. B. Nordmark, Universal limit mapping in grazing bifurcations,, Phys. Rev. E, 55 (1997), 266. doi: 10.1103/PhysRevE.55.266. Google Scholar

[10]

M. di Bernardo, C. J. Budd, A. R. Champneys and P. Kowalczyk, "Piecewise-smooth Dynamical Systems: Theory and Applications,", Springer Verlag (Applied Mathematical Sciences), (2008). Google Scholar

[11]

Y. Ma, M. Agarwal and S. Banerjee, Border collision bifurcations in a soft impact system,, Physics Letters A, 354 (2006), 281. doi: 10.1016/j.physleta.2006.01.025. Google Scholar

[12]

Y. Ma, J. Ing, S. Banerjee, M. Wiercigroch and E. Pavlovskaia, The nature of the normal form map for soft impacting systems,, International Journal of Nonlinear Mechanics, 43 (2008), 504. doi: 10.1016/j.ijnonlinmec.2008.04.001. Google Scholar

[13]

J. Ing, E. Pavlovskaia, M. Wiercigroch and S. Banerjee, Experimental study of impact oscillator with one-sided elastic constraint,, Philosophical Transactions of the Royal Society of London, 366 (2008), 679. Google Scholar

[14]

R. I. Leine and H. Nijmeijer, "Dynamics and Bifurcations in Non-Smooth Mechanical Systems,", Springer Verlag, (2004). Google Scholar

[15]

S. Banerjee and C. Grebogi, Border collision bifurcations in two-dimensional piecewise smooth maps,, Physical Review E, 59 (1999), 4052. doi: 10.1103/PhysRevE.59.4052. Google Scholar

[16]

S. Banerjee, P. Ranjan and C. Grebogi, Bifurcations in two-dimensional piecewise smooth maps -- theory and applications in switching circuits,, IEEE Transactions on Circuits and Systems-I, 47 (2000), 633. doi: 10.1109/81.847870. Google Scholar

[17]

H. Dankowicz and F. Svahn, On the stabilizability of near-grazing dynamics in impact oscillators,, Int. J. Robust & Nonlinear Control, 17 (2007), 1405. doi: 10.1002/rnc.1252. Google Scholar

[1]

Iryna Sushko, Anna Agliari, Laura Gardini. Bistability and border-collision bifurcations for a family of unimodal piecewise smooth maps. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 881-897. doi: 10.3934/dcdsb.2005.5.881

[2]

Hun Ki Baek, Younghae Do. Dangerous Border-Collision bifurcations of a piecewise-smooth map. Communications on Pure & Applied Analysis, 2006, 5 (3) : 493-503. doi: 10.3934/cpaa.2006.5.493

[3]

Zhiying Qin, Jichen Yang, Soumitro Banerjee, Guirong Jiang. Border-collision bifurcations in a generalized piecewise linear-power map. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 547-567. doi: 10.3934/dcdsb.2011.16.547

[4]

Laura Gardini, Roya Makrooni, Iryna Sushko. Cascades of alternating smooth bifurcations and border collision bifurcations with singularity in a family of discontinuous linear-power maps. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 701-729. doi: 10.3934/dcdsb.2018039

[5]

Cédric Bernardin, Valeria Ricci. A simple particle model for a system of coupled equations with absorbing collision term. Kinetic & Related Models, 2011, 4 (3) : 633-668. doi: 10.3934/krm.2011.4.633

[6]

Dmitry Treschev. Oscillator and thermostat. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1693-1712. doi: 10.3934/dcds.2010.28.1693

[7]

Zhaosheng Feng, Guangyue Gao, Jing Cui. Duffing--van der Pol--type oscillator system and its first integrals. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1377-1391. doi: 10.3934/cpaa.2011.10.1377

[8]

Mayee Chen, Junping Shi. Effect of rotational grazing on plant and animal production. Mathematical Biosciences & Engineering, 2018, 15 (2) : 393-406. doi: 10.3934/mbe.2018017

[9]

M. D. Todorov, C. I. Christov. Collision dynamics of circularly polarized solitons in nonintegrable coupled nonlinear Schrödinger system. Conference Publications, 2009, 2009 (Special) : 780-789. doi: 10.3934/proc.2009.2009.780

[10]

Rong Yang, Li Chen. Mean-field limit for a collision-avoiding flocking system and the time-asymptotic flocking dynamics for the kinetic equation. Kinetic & Related Models, 2014, 7 (2) : 381-400. doi: 10.3934/krm.2014.7.381

[11]

Shubo Zhao, Ping Liu, Mingchao Jiang. Stability and bifurcation analysis in a chemotaxis bistable growth system. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1165-1174. doi: 10.3934/dcdss.2017063

[12]

Dan Liu, Shigui Ruan, Deming Zhu. Bifurcation analysis in models of tumor and immune system interactions. Discrete & Continuous Dynamical Systems - B, 2009, 12 (1) : 151-168. doi: 10.3934/dcdsb.2009.12.151

[13]

Sergey V. Bolotin. Shadowing chains of collision orbits. Discrete & Continuous Dynamical Systems - A, 2006, 14 (2) : 235-260. doi: 10.3934/dcds.2006.14.235

[14]

Fengqi Yi, Eamonn A. Gaffney, Sungrim Seirin-Lee. The bifurcation analysis of turing pattern formation induced by delay and diffusion in the Schnakenberg system. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 647-668. doi: 10.3934/dcdsb.2017031

[15]

Ling-Hao Zhang, Wei Wang. Direct approach to detect the heteroclinic bifurcation of the planar nonlinear system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 591-604. doi: 10.3934/dcds.2017024

[16]

Rushun Tian, Zhi-Qiang Wang. Bifurcation results on positive solutions of an indefinite nonlinear elliptic system. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 335-344. doi: 10.3934/dcds.2013.33.335

[17]

Xiaoling Zou, Dejun Fan, Ke Wang. Stationary distribution and stochastic Hopf bifurcation for a predator-prey system with noises. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1507-1519. doi: 10.3934/dcdsb.2013.18.1507

[18]

Shixing Li, Dongming Yan. On the steady state bifurcation of the Cahn-Hilliard/Allen-Cahn system. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3077-3088. doi: 10.3934/dcdsb.2018301

[19]

Juan Su, Bing Xu, Lan Zou. Bifurcation analysis of an enzyme-catalyzed reaction system with branched sink. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-33. doi: 10.3934/dcdsb.2019167

[20]

Xiong Li. The stability of the equilibrium for a perturbed asymmetric oscillator. Communications on Pure & Applied Analysis, 2006, 5 (3) : 515-528. doi: 10.3934/cpaa.2006.5.515

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (6)

[Back to Top]