July  2011, 16(1): 225-238. doi: 10.3934/dcdsb.2011.16.225

On a class of three dimensional Navier-Stokes equations with bounded delay

1. 

Universidade Estadual do Oeste do Paraná - UNIOESTE, Colegiado do curso de Matemática, Rua Universitária, 2069. Cx.P. 711, 85819-110 Cascavel, PR, Brazil

2. 

Departamento de Matemática, IMECC - UNICAMP, Rua Sergio Buarque de Holanda, 651, 13083-859 Campinas, SP, Brazil

Received  June 2010 Revised  September 2010 Published  April 2011

In this paper we consider a three dimensional Navier-Stokes type equations with delay terms. We discuss the existence of weak and strong solutions and we study the asymptotic behavior of the strong solutions. Moreover, under suitable assumptions, we show the exponential stability of stationary solutions.
Citation: Sandro M. Guzzo, Gabriela Planas. On a class of three dimensional Navier-Stokes equations with bounded delay. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 225-238. doi: 10.3934/dcdsb.2011.16.225
References:
[1]

T. Caraballo and J. Real, Navier-Stokes equations with delays,, Proc. R. Soc. Lond. A, 457 (2001), 2441. doi: 10.1098/rspa.2001.0807. Google Scholar

[2]

T. Caraballo and J. Real, Asymptotic behavior of two-dimensional Navier-Stokes equations with delays,, Proc. R. Soc. Lond. A, 459 (2003), 3181. doi: 10.1098/rspa.2003.1166. Google Scholar

[3]

T. Caraballo and J. Real, Attractors for 2D-Navier-Stokes models with delays,, J. Differential Equations, 205 (2004), 271. doi: 10.1016/j.jde.2004.04.012. Google Scholar

[4]

M. J. Garrido-Atienza and P. Marín-Rubio, Navier-Stokes equations with delays on unbounded domains,, Nonlinear Anal., 64 (2006), 1100. doi: 10.1016/j.na.2005.05.057. Google Scholar

[5]

W. Liu, Asymptotic behavior of solutions of time-delayed Burgers' equation,, Discrete Contin. Dyn. Syst. Ser. B., 2 (2002), 47. doi: 10.3934/dcdsb.2002.2.47. Google Scholar

[6]

P. Marín-Rubio and J. Real, Attractors for 2D-Navier-Stokes equations with delays on some unbounded domains,, Nonlinear Anal., 67 (2007), 2784. doi: 10.1016/j.na.2006.09.035. Google Scholar

[7]

P. Marín-Rubio and J. Real, Pullback attractors for 2D-Navier-Stokes equations with delays in continuous and sub-linear operators,, Discrete Contin. Dyn. Syst., 26 (2010), 989. doi: 10.3934/dcds.2010.26.989. Google Scholar

[8]

G. Planas and E. Hernández, Asymptotic behaviour of two-dimensional time-delayed Navier-Stokes equations,, Discrete Contin. Dyn. Syst., 21 (2008), 1245. doi: 10.3934/dcds.2008.21.1245. Google Scholar

[9]

J. C. Robinson, "Infinite-Dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors,", Cambridge texts in applied mathematics, (2001). Google Scholar

[10]

Y. Tang and M. Wan, A remark on exponential stability of time-delayed Burgers equation,, Discrete Contin. Dyn. Syst. Ser. B., 12 (2009), 219. doi: 10.3934/dcdsb.2009.12.219. Google Scholar

[11]

T. Taniguchi, The exponential behavior of Navier-Stokes equations with time delay external force,, Discrete Contin. Dyn. Syst., 12 (2005), 997. doi: 10.3934/dcds.2005.12.997. Google Scholar

[12]

R. Temam, "Navier-Stokes Equations: Theory and Numerical Analysis,", Studies in Mathematics and its applications. Volume \textbf{2}, 2 (1984). Google Scholar

show all references

References:
[1]

T. Caraballo and J. Real, Navier-Stokes equations with delays,, Proc. R. Soc. Lond. A, 457 (2001), 2441. doi: 10.1098/rspa.2001.0807. Google Scholar

[2]

T. Caraballo and J. Real, Asymptotic behavior of two-dimensional Navier-Stokes equations with delays,, Proc. R. Soc. Lond. A, 459 (2003), 3181. doi: 10.1098/rspa.2003.1166. Google Scholar

[3]

T. Caraballo and J. Real, Attractors for 2D-Navier-Stokes models with delays,, J. Differential Equations, 205 (2004), 271. doi: 10.1016/j.jde.2004.04.012. Google Scholar

[4]

M. J. Garrido-Atienza and P. Marín-Rubio, Navier-Stokes equations with delays on unbounded domains,, Nonlinear Anal., 64 (2006), 1100. doi: 10.1016/j.na.2005.05.057. Google Scholar

[5]

W. Liu, Asymptotic behavior of solutions of time-delayed Burgers' equation,, Discrete Contin. Dyn. Syst. Ser. B., 2 (2002), 47. doi: 10.3934/dcdsb.2002.2.47. Google Scholar

[6]

P. Marín-Rubio and J. Real, Attractors for 2D-Navier-Stokes equations with delays on some unbounded domains,, Nonlinear Anal., 67 (2007), 2784. doi: 10.1016/j.na.2006.09.035. Google Scholar

[7]

P. Marín-Rubio and J. Real, Pullback attractors for 2D-Navier-Stokes equations with delays in continuous and sub-linear operators,, Discrete Contin. Dyn. Syst., 26 (2010), 989. doi: 10.3934/dcds.2010.26.989. Google Scholar

[8]

G. Planas and E. Hernández, Asymptotic behaviour of two-dimensional time-delayed Navier-Stokes equations,, Discrete Contin. Dyn. Syst., 21 (2008), 1245. doi: 10.3934/dcds.2008.21.1245. Google Scholar

[9]

J. C. Robinson, "Infinite-Dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors,", Cambridge texts in applied mathematics, (2001). Google Scholar

[10]

Y. Tang and M. Wan, A remark on exponential stability of time-delayed Burgers equation,, Discrete Contin. Dyn. Syst. Ser. B., 12 (2009), 219. doi: 10.3934/dcdsb.2009.12.219. Google Scholar

[11]

T. Taniguchi, The exponential behavior of Navier-Stokes equations with time delay external force,, Discrete Contin. Dyn. Syst., 12 (2005), 997. doi: 10.3934/dcds.2005.12.997. Google Scholar

[12]

R. Temam, "Navier-Stokes Equations: Theory and Numerical Analysis,", Studies in Mathematics and its applications. Volume \textbf{2}, 2 (1984). Google Scholar

[1]

Takeshi Taniguchi. The exponential behavior of Navier-Stokes equations with time delay external force. Discrete & Continuous Dynamical Systems - A, 2005, 12 (5) : 997-1018. doi: 10.3934/dcds.2005.12.997

[2]

Bo-Qing Dong, Juan Song. Global regularity and asymptotic behavior of modified Navier-Stokes equations with fractional dissipation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (1) : 57-79. doi: 10.3934/dcds.2012.32.57

[3]

Changjiang Zhu, Ruizhao Zi. Asymptotic behavior of solutions to 1D compressible Navier-Stokes equations with gravity and vacuum. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1263-1283. doi: 10.3934/dcds.2011.30.1263

[4]

G. Deugoué, T. Tachim Medjo. The Stochastic 3D globally modified Navier-Stokes equations: Existence, uniqueness and asymptotic behavior. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2593-2621. doi: 10.3934/cpaa.2018123

[5]

Anhui Gu, Kening Lu, Bixiang Wang. Asymptotic behavior of random Navier-Stokes equations driven by Wong-Zakai approximations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 185-218. doi: 10.3934/dcds.2019008

[6]

Sylvie Monniaux. Various boundary conditions for Navier-Stokes equations in bounded Lipschitz domains. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1355-1369. doi: 10.3934/dcdss.2013.6.1355

[7]

Linglong Du, Haitao Wang. Pointwise wave behavior of the Navier-Stokes equations in half space. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1349-1363. doi: 10.3934/dcds.2018055

[8]

Tomás Caraballo, Xiaoying Han. A survey on Navier-Stokes models with delays: Existence, uniqueness and asymptotic behavior of solutions. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1079-1101. doi: 10.3934/dcdss.2015.8.1079

[9]

Kuijie Li, Tohru Ozawa, Baoxiang Wang. Dynamical behavior for the solutions of the Navier-Stokes equation. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1511-1560. doi: 10.3934/cpaa.2018073

[10]

Pavel I. Plotnikov, Jan Sokolowski. Compressible Navier-Stokes equations. Conference Publications, 2009, 2009 (Special) : 602-611. doi: 10.3934/proc.2009.2009.602

[11]

Jan W. Cholewa, Tomasz Dlotko. Fractional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 2967-2988. doi: 10.3934/dcdsb.2017149

[12]

Daniel Coutand, J. Peirce, Steve Shkoller. Global well-posedness of weak solutions for the Lagrangian averaged Navier-Stokes equations on bounded domains. Communications on Pure & Applied Analysis, 2002, 1 (1) : 35-50. doi: 10.3934/cpaa.2002.1.35

[13]

Zdeněk Skalák. On the asymptotic decay of higher-order norms of the solutions to the Navier-Stokes equations in R3. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 361-370. doi: 10.3934/dcdss.2010.3.361

[14]

Gung-Min Gie, Makram Hamouda, Roger Temam. Asymptotic analysis of the Navier-Stokes equations in a curved domain with a non-characteristic boundary. Networks & Heterogeneous Media, 2012, 7 (4) : 741-766. doi: 10.3934/nhm.2012.7.741

[15]

Gabriela Planas, Eduardo Hernández. Asymptotic behaviour of two-dimensional time-delayed Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2008, 21 (4) : 1245-1258. doi: 10.3934/dcds.2008.21.1245

[16]

Hermenegildo Borges de Oliveira. Anisotropically diffused and damped Navier-Stokes equations. Conference Publications, 2015, 2015 (special) : 349-358. doi: 10.3934/proc.2015.0349

[17]

Hyukjin Kwean. Kwak transformation and Navier-Stokes equations. Communications on Pure & Applied Analysis, 2004, 3 (3) : 433-446. doi: 10.3934/cpaa.2004.3.433

[18]

Vittorino Pata. On the regularity of solutions to the Navier-Stokes equations. Communications on Pure & Applied Analysis, 2012, 11 (2) : 747-761. doi: 10.3934/cpaa.2012.11.747

[19]

C. Foias, M. S Jolly, I. Kukavica, E. S. Titi. The Lorenz equation as a metaphor for the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 403-429. doi: 10.3934/dcds.2001.7.403

[20]

Igor Kukavica. On regularity for the Navier-Stokes equations in Morrey spaces. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1319-1328. doi: 10.3934/dcds.2010.26.1319

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]