• Previous Article
    Determination of effective diffusion coefficients of drug delivery devices by a state observer approach
  • DCDS-B Home
  • This Issue
  • Next Article
    A spectral PRP conjugate gradient methods for nonconvex optimization problem based on modified line search
November  2011, 16(4): 1137-1155. doi: 10.3934/dcdsb.2011.16.1137

A class of nonlinear impulsive differential equation and optimal controls on time scales

1. 

Department of Mathematics, Guizhou University, Guiyang, Guizhou 550025

2. 

Department of Mathematics, Guizhou University, Guiyang, Guizhou, 550025

Received  October 2010 Revised  March 2011 Published  August 2011

This paper is mainly concerned with a class of optimal control problems of systems governed by the nonlinear impulsive differential equation on time scale. The reasonable weak solution of nonlinear impulsive differential equation on time scale is introduced and the existence and uniqueness of the weak solution and its properties are presented. By $L^{1}-$strong$-$weak lower semicontinuity of integral functional on time scale, we give the existence of optimal controls. Using integration by parts formula on time scale, the necessary conditions of optimality are derived. An example on mathematical programming is also presented for demonstration.
Citation: Yunfei Peng, X. Xiang. A class of nonlinear impulsive differential equation and optimal controls on time scales. Discrete & Continuous Dynamical Systems - B, 2011, 16 (4) : 1137-1155. doi: 10.3934/dcdsb.2011.16.1137
References:
[1]

M. U. Akhmet and M. Turan, The differential equations on time scales through impulsive differential equations,, Nonlinear Analysis, 65 (2006), 2043. doi: 10.1016/j.na.2005.12.042. Google Scholar

[2]

M. Benchohra, J. Henderson and S. Ntouyas, "Impulsive Differential Equations and Inclusion,", Contemporary Mathematics and its Applications, 2 (2006). Google Scholar

[3]

Rui A. C. Ferreira and Delfim F. M. Torres, Higher-order calculus of variations on time scales,, in, (2008), 149. Google Scholar

[4]

P. Gajardo, H. Ramirez and A. Rapaport, Minimal time sequential Banach reactors with bounded and impulse controls for one or more species,, SIAM J. Control Optim., 47 (2008), 2827. doi: 10.1137/070695204. Google Scholar

[5]

Y. Gong and X. Xiang, A class of optimal control problems of systems governed by the first order linear dynamic equations on time scales,, J. Industrial and Management Optimization, 5 (2009), 1. Google Scholar

[6]

S. Hu and N. S. Papageorgiou, "Handbook of Multivalued Analysis. Vol. I. Theory," Mathematics and its Applications, 419,, Kluwer Academic Publishers, (1997). Google Scholar

[7]

Roman Hilscher and Vera Zeidan, Weak maximum principle and accessory problem for control problems on time scales,, Nonlinear Analysis, 70 (2009), 3209. doi: 10.1016/j.na.2008.04.025. Google Scholar

[8]

V. Lakshmikantham and S. Sivasundaram, B. Kaymakcalan, "Dynamical Systems on Measure Chains,'', Kluwer Acadamic Publishers, (1996). Google Scholar

[9]

G. Liu, X. Xiang and Y. Peng, Nonlinear integro-differential equation and optimal controls on time scales,, Computers and Mathematics with Applications, 61 (2011), 155. doi: 10.1016/j.camwa.2010.10.013. Google Scholar

[10]

H. Liu and X. Xiang, A class of the first order impulsive dynamic equations on time scales,, Nonlinear Analysis, 69 (2008), 2803. doi: 10.1016/j.na.2007.08.052. Google Scholar

[11]

Yajun Ma and Jitao Sun, Uniform eventual Lipschitz stability of impulsive systems on time scales,, Applied Mathematics and Computation, 211 (2009), 246. doi: 10.1016/j.amc.2009.01.033. Google Scholar

[12]

Agnieszka B. Malinowska and Delfim F. M. Torres, Strong minimizers of the calculus of variations on time scales and the Weierstrass condition,, Proceedings of the Estonian Academy of Sciences, 58 (2009), 205. doi: 10.3176/proc.2009.4.02. Google Scholar

[13]

Agnieszka B. Malinowska and Delfim F. M. Torres, Leitmann's direct method of optimization for absolute extrema of certain problems of the calculus of variations on time scales,, Applied Mathematics and Computation, 217 (2010), 1158. doi: 10.1016/j.amc.2010.01.015. Google Scholar

[14]

Y. Peng and X. Xiang, Second order nonlinear impulsive time-variant systems with unbounded perturbation and optimal controls,, J. Industrial and Management Optimization, 4 (2008), 17. Google Scholar

[15]

Y. Peng, X. Xiang, Y. Gong and G. Liu, Necessary conditions of optimality for a class of optimal control problems on time scales,, Computers and Mathematics with Applications, 58 (2009), 2035. doi: 10.1016/j.camwa.2009.08.032. Google Scholar

[16]

Y. Peng, X. Xiang and Yang Jiang, Nonliear dynaminc systems and optimal control problems on time scales,, ESAIM Control, 17 (2011), 654. doi: 10.1051/cocv/2010022. Google Scholar

[17]

E. Zeidler, "Nonlinear Functional Analysis and Its Applications III, Variational Methods and Optimization,", Springer-Verlag, (1985). Google Scholar

[18]

Z. Zhan and W. Wei, On existence of optimal control governed by a class of the first-order linear dynamic systems on time scales,, Applied Mathematics and Computation, 215 (2009), 2070. doi: 10.1016/j.amc.2009.08.009. Google Scholar

[19]

Z. Zhan and W. Wei, Necessary conditions for a class of optimal control problems on time scales,, Abstract and Applied Analysis, 2009 (9743). Google Scholar

show all references

References:
[1]

M. U. Akhmet and M. Turan, The differential equations on time scales through impulsive differential equations,, Nonlinear Analysis, 65 (2006), 2043. doi: 10.1016/j.na.2005.12.042. Google Scholar

[2]

M. Benchohra, J. Henderson and S. Ntouyas, "Impulsive Differential Equations and Inclusion,", Contemporary Mathematics and its Applications, 2 (2006). Google Scholar

[3]

Rui A. C. Ferreira and Delfim F. M. Torres, Higher-order calculus of variations on time scales,, in, (2008), 149. Google Scholar

[4]

P. Gajardo, H. Ramirez and A. Rapaport, Minimal time sequential Banach reactors with bounded and impulse controls for one or more species,, SIAM J. Control Optim., 47 (2008), 2827. doi: 10.1137/070695204. Google Scholar

[5]

Y. Gong and X. Xiang, A class of optimal control problems of systems governed by the first order linear dynamic equations on time scales,, J. Industrial and Management Optimization, 5 (2009), 1. Google Scholar

[6]

S. Hu and N. S. Papageorgiou, "Handbook of Multivalued Analysis. Vol. I. Theory," Mathematics and its Applications, 419,, Kluwer Academic Publishers, (1997). Google Scholar

[7]

Roman Hilscher and Vera Zeidan, Weak maximum principle and accessory problem for control problems on time scales,, Nonlinear Analysis, 70 (2009), 3209. doi: 10.1016/j.na.2008.04.025. Google Scholar

[8]

V. Lakshmikantham and S. Sivasundaram, B. Kaymakcalan, "Dynamical Systems on Measure Chains,'', Kluwer Acadamic Publishers, (1996). Google Scholar

[9]

G. Liu, X. Xiang and Y. Peng, Nonlinear integro-differential equation and optimal controls on time scales,, Computers and Mathematics with Applications, 61 (2011), 155. doi: 10.1016/j.camwa.2010.10.013. Google Scholar

[10]

H. Liu and X. Xiang, A class of the first order impulsive dynamic equations on time scales,, Nonlinear Analysis, 69 (2008), 2803. doi: 10.1016/j.na.2007.08.052. Google Scholar

[11]

Yajun Ma and Jitao Sun, Uniform eventual Lipschitz stability of impulsive systems on time scales,, Applied Mathematics and Computation, 211 (2009), 246. doi: 10.1016/j.amc.2009.01.033. Google Scholar

[12]

Agnieszka B. Malinowska and Delfim F. M. Torres, Strong minimizers of the calculus of variations on time scales and the Weierstrass condition,, Proceedings of the Estonian Academy of Sciences, 58 (2009), 205. doi: 10.3176/proc.2009.4.02. Google Scholar

[13]

Agnieszka B. Malinowska and Delfim F. M. Torres, Leitmann's direct method of optimization for absolute extrema of certain problems of the calculus of variations on time scales,, Applied Mathematics and Computation, 217 (2010), 1158. doi: 10.1016/j.amc.2010.01.015. Google Scholar

[14]

Y. Peng and X. Xiang, Second order nonlinear impulsive time-variant systems with unbounded perturbation and optimal controls,, J. Industrial and Management Optimization, 4 (2008), 17. Google Scholar

[15]

Y. Peng, X. Xiang, Y. Gong and G. Liu, Necessary conditions of optimality for a class of optimal control problems on time scales,, Computers and Mathematics with Applications, 58 (2009), 2035. doi: 10.1016/j.camwa.2009.08.032. Google Scholar

[16]

Y. Peng, X. Xiang and Yang Jiang, Nonliear dynaminc systems and optimal control problems on time scales,, ESAIM Control, 17 (2011), 654. doi: 10.1051/cocv/2010022. Google Scholar

[17]

E. Zeidler, "Nonlinear Functional Analysis and Its Applications III, Variational Methods and Optimization,", Springer-Verlag, (1985). Google Scholar

[18]

Z. Zhan and W. Wei, On existence of optimal control governed by a class of the first-order linear dynamic systems on time scales,, Applied Mathematics and Computation, 215 (2009), 2070. doi: 10.1016/j.amc.2009.08.009. Google Scholar

[19]

Z. Zhan and W. Wei, Necessary conditions for a class of optimal control problems on time scales,, Abstract and Applied Analysis, 2009 (9743). Google Scholar

[1]

Sofia O. Lopes, Fernando A. C. C. Fontes, Maria do Rosário de Pinho. On constraint qualifications for nondegenerate necessary conditions of optimality applied to optimal control problems. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 559-575. doi: 10.3934/dcds.2011.29.559

[2]

Andrei V. Dmitruk, Nikolai P. Osmolovskii. Necessary conditions for a weak minimum in optimal control problems with integral equations on a variable time interval. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4323-4343. doi: 10.3934/dcds.2015.35.4323

[3]

Andrei V. Dmitruk, Nikolai P. Osmolovski. Necessary conditions for a weak minimum in a general optimal control problem with integral equations on a variable time interval. Mathematical Control & Related Fields, 2017, 7 (4) : 507-535. doi: 10.3934/mcrf.2017019

[4]

Vladimir Gaitsgory, Alex Parkinson, Ilya Shvartsman. Linear programming based optimality conditions and approximate solution of a deterministic infinite horizon discounted optimal control problem in discrete time. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1743-1767. doi: 10.3934/dcdsb.2018235

[5]

Jianxiong Ye, An Li. Necessary optimality conditions for nonautonomous optimal control problems and its applications to bilevel optimal control. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1399-1419. doi: 10.3934/jimo.2018101

[6]

Shahlar F. Maharramov. Necessary optimality conditions for switching control problems. Journal of Industrial & Management Optimization, 2010, 6 (1) : 47-55. doi: 10.3934/jimo.2010.6.47

[7]

Monika Dryl, Delfim F. M. Torres. Necessary optimality conditions for infinite horizon variational problems on time scales. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 145-160. doi: 10.3934/naco.2013.3.145

[8]

Francis Clarke. A general theorem on necessary conditions in optimal control. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 485-503. doi: 10.3934/dcds.2011.29.485

[9]

Luong V. Nguyen. A note on optimality conditions for optimal exit time problems. Mathematical Control & Related Fields, 2015, 5 (2) : 291-303. doi: 10.3934/mcrf.2015.5.291

[10]

Vincenzo Basco, Piermarco Cannarsa, Hélène Frankowska. Necessary conditions for infinite horizon optimal control problems with state constraints. Mathematical Control & Related Fields, 2018, 8 (3&4) : 535-555. doi: 10.3934/mcrf.2018022

[11]

Stepan Sorokin, Maxim Staritsyn. Feedback necessary optimality conditions for a class of terminally constrained state-linear variational problems inspired by impulsive control. Numerical Algebra, Control & Optimization, 2017, 7 (2) : 201-210. doi: 10.3934/naco.2017014

[12]

M. Soledad Aronna. Second order necessary and sufficient optimality conditions for singular solutions of partially-affine control problems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1233-1258. doi: 10.3934/dcdss.2018070

[13]

Piernicola Bettiol, Nathalie Khalil. Necessary optimality conditions for average cost minimization problems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2093-2124. doi: 10.3934/dcdsb.2019086

[14]

Lucas Bonifacius, Ira Neitzel. Second order optimality conditions for optimal control of quasilinear parabolic equations. Mathematical Control & Related Fields, 2018, 8 (1) : 1-34. doi: 10.3934/mcrf.2018001

[15]

Nuno R. O. Bastos, Rui A. C. Ferreira, Delfim F. M. Torres. Necessary optimality conditions for fractional difference problems of the calculus of variations. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 417-437. doi: 10.3934/dcds.2011.29.417

[16]

Heinz Schättler, Urszula Ledzewicz, Helmut Maurer. Sufficient conditions for strong local optimality in optimal control problems with $L_{2}$-type objectives and control constraints. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2657-2679. doi: 10.3934/dcdsb.2014.19.2657

[17]

Hongwei Lou, Jiongmin Yong. Second-order necessary conditions for optimal control of semilinear elliptic equations with leading term containing controls. Mathematical Control & Related Fields, 2018, 8 (1) : 57-88. doi: 10.3934/mcrf.2018003

[18]

Hongwei Lou. Second-order necessary/sufficient conditions for optimal control problems in the absence of linear structure. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1445-1464. doi: 10.3934/dcdsb.2010.14.1445

[19]

Alexander Blokh. Necessary conditions for the existence of wandering triangles for cubic laminations. Discrete & Continuous Dynamical Systems - A, 2005, 13 (1) : 13-34. doi: 10.3934/dcds.2005.13.13

[20]

Shin-Yi Lee, Shin-Hwa Wang, Chiou-Ping Ye. Explicit necessary and sufficient conditions for the existence of a dead core solution of a p-laplacian steady-state reaction-diffusion problem. Conference Publications, 2005, 2005 (Special) : 587-596. doi: 10.3934/proc.2005.2005.587

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (16)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]