December  2011, 15(3): 849-865. doi: 10.3934/dcdsb.2011.15.849

Stability of positive constant steady states and their bifurcation in a biological depletion model

1. 

College of Mathematics and Information Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, China, China

Received  October 2009 Revised  August 2010 Published  February 2011

This paper is concerned with a biological depletion model in a bounded domain. The stability of the positive constant steady states is discussed. In one dimensional case, we make a detailed description for the global bifurcation structure from two positive constant solutions. The result indicates that if $d$ is properly small, the system has at least one non-constant positive steady-state. The main tools used here include the stability theory, bifurcation theory and simulations. From extensive numerical simulations, the predictions from linear theory are confirmed and the influence of parameters $d,D,\sigma$ on these patterns is depicted.
Citation: Yan'e Wang, Jianhua Wu. Stability of positive constant steady states and their bifurcation in a biological depletion model. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 849-865. doi: 10.3934/dcdsb.2011.15.849
References:
[1]

H. L. Smith and P. Waltman, "The theory of the Chemostat: Dynamics of Microbial Competition,", Cambridge University Press, (1995). doi: 10.1017/CBO9780511530043. Google Scholar

[2]

A. Gierer and H. Meinhardt, A theory of biological pattern formation,, Kybernetik, 12 (1972), 30. doi: 10.1007/BF00289234. Google Scholar

[3]

T. Erneux and E. Reiss, Brusselator isolas,, SIAM J. Appl. Math., 43 (1983), 1240. doi: 10.1137/0143082. Google Scholar

[4]

I. Lengyel and I. R. Epstein, Modeling of Turing structure in the Chlorite-iodide-malonic acid-starch reaction system,, Science, 251 (1991), 650. doi: 10.1126/science.251.4994.650. Google Scholar

[5]

J. Schnakenberg, Simple chemical reaction systems with limit cycle behavior,, J. Theor. Biol., 81 (1979), 389. doi: 10.1016/0022-5193(79)90042-0. Google Scholar

[6]

J. H. Wu, Global bifurcation of coexistence state for the competition model in the chemostat,, Nonlinear Anal., 39 (2000), 817. doi: 10.1016/S0362-546X(98)00250-8. Google Scholar

[7]

W. M. Ni and J. C. Wei, On positive solutions concentrating on spheres for the Gierer-Meinhardt system,, J. Diff. Eqns., 221 (2006), 158. doi: 10.1016/j.jde.2005.03.004. Google Scholar

[8]

R. Peng and M. X. Wang, Pattern formation in the Brusselator system,, J. Math. Anal. Appl., 309 (2005), 151. doi: 10.1016/j.jmaa.2004.12.026. Google Scholar

[9]

W. M. Ni and M. Tang, Turing patterns in the Lengyel-Epstein system for the CIMA reaction,, Transactions of the American Mathematical Society, 357 (2005), 3953. doi: 10.1090/S0002-9947-05-04010-9. Google Scholar

[10]

J. Wei and M. Winter, Stationary multiple spots for reaction-diffusion systems,, J. Math. Biol., 57 (2008), 53. doi: 10.1007/s00285-007-0146-y. Google Scholar

[11]

J. H. Wu, Global solutions of a biological depletion model,, J. Shaanxi Normal University (Nature Science Edition), 28 (2000), 26. Google Scholar

[12]

Y. Lou and W. M. Ni, Diffusion, self-diffusion and cross-diffusion,, J. Diff. Eqns., 131 (1996), 79. doi: 10.1006/jdeq.1996.0157. Google Scholar

[13]

M. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues,, J. Functional Anal., 8 (1971), 321. doi: 10.1016/0022-1236(71)90015-2. Google Scholar

[14]

P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems,, J. Functional Anal., 7 (1971), 487. doi: 10.1016/0022-1236(71)90030-9. Google Scholar

[15]

W. M. Ni, Diffusion, cross-diffusion, and their spike-layer steady states,, Notices Amer. Math. Soc., 45 (1998), 9. Google Scholar

[16]

I. Takagi, Point-condensation for a reaction-diffusion system,, J. Diff. Eqns., 61 (1986), 208. doi: 10.1016/0022-0396(86)90119-1. Google Scholar

show all references

References:
[1]

H. L. Smith and P. Waltman, "The theory of the Chemostat: Dynamics of Microbial Competition,", Cambridge University Press, (1995). doi: 10.1017/CBO9780511530043. Google Scholar

[2]

A. Gierer and H. Meinhardt, A theory of biological pattern formation,, Kybernetik, 12 (1972), 30. doi: 10.1007/BF00289234. Google Scholar

[3]

T. Erneux and E. Reiss, Brusselator isolas,, SIAM J. Appl. Math., 43 (1983), 1240. doi: 10.1137/0143082. Google Scholar

[4]

I. Lengyel and I. R. Epstein, Modeling of Turing structure in the Chlorite-iodide-malonic acid-starch reaction system,, Science, 251 (1991), 650. doi: 10.1126/science.251.4994.650. Google Scholar

[5]

J. Schnakenberg, Simple chemical reaction systems with limit cycle behavior,, J. Theor. Biol., 81 (1979), 389. doi: 10.1016/0022-5193(79)90042-0. Google Scholar

[6]

J. H. Wu, Global bifurcation of coexistence state for the competition model in the chemostat,, Nonlinear Anal., 39 (2000), 817. doi: 10.1016/S0362-546X(98)00250-8. Google Scholar

[7]

W. M. Ni and J. C. Wei, On positive solutions concentrating on spheres for the Gierer-Meinhardt system,, J. Diff. Eqns., 221 (2006), 158. doi: 10.1016/j.jde.2005.03.004. Google Scholar

[8]

R. Peng and M. X. Wang, Pattern formation in the Brusselator system,, J. Math. Anal. Appl., 309 (2005), 151. doi: 10.1016/j.jmaa.2004.12.026. Google Scholar

[9]

W. M. Ni and M. Tang, Turing patterns in the Lengyel-Epstein system for the CIMA reaction,, Transactions of the American Mathematical Society, 357 (2005), 3953. doi: 10.1090/S0002-9947-05-04010-9. Google Scholar

[10]

J. Wei and M. Winter, Stationary multiple spots for reaction-diffusion systems,, J. Math. Biol., 57 (2008), 53. doi: 10.1007/s00285-007-0146-y. Google Scholar

[11]

J. H. Wu, Global solutions of a biological depletion model,, J. Shaanxi Normal University (Nature Science Edition), 28 (2000), 26. Google Scholar

[12]

Y. Lou and W. M. Ni, Diffusion, self-diffusion and cross-diffusion,, J. Diff. Eqns., 131 (1996), 79. doi: 10.1006/jdeq.1996.0157. Google Scholar

[13]

M. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues,, J. Functional Anal., 8 (1971), 321. doi: 10.1016/0022-1236(71)90015-2. Google Scholar

[14]

P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems,, J. Functional Anal., 7 (1971), 487. doi: 10.1016/0022-1236(71)90030-9. Google Scholar

[15]

W. M. Ni, Diffusion, cross-diffusion, and their spike-layer steady states,, Notices Amer. Math. Soc., 45 (1998), 9. Google Scholar

[16]

I. Takagi, Point-condensation for a reaction-diffusion system,, J. Diff. Eqns., 61 (1986), 208. doi: 10.1016/0022-0396(86)90119-1. Google Scholar

[1]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[2]

Xiaomei Feng, Zhidong Teng, Kai Wang, Fengqin Zhang. Backward bifurcation and global stability in an epidemic model with treatment and vaccination. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 999-1025. doi: 10.3934/dcdsb.2014.19.999

[3]

Fabien Crauste. Global Asymptotic Stability and Hopf Bifurcation for a Blood Cell Production Model. Mathematical Biosciences & Engineering, 2006, 3 (2) : 325-346. doi: 10.3934/mbe.2006.3.325

[4]

Hui Miao, Zhidong Teng, Chengjun Kang. Stability and Hopf bifurcation of an HIV infection model with saturation incidence and two delays. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2365-2387. doi: 10.3934/dcdsb.2017121

[5]

Yaodan Huang, Zhengce Zhang, Bei Hu. Bifurcation from stability to instability for a free boundary tumor model with angiogenesis. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2473-2510. doi: 10.3934/dcds.2019105

[6]

Shengqin Xu, Chuncheng Wang, Dejun Fan. Stability and bifurcation in an age-structured model with stocking rate and time delays. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2535-2549. doi: 10.3934/dcdsb.2018264

[7]

Meihua Wei, Yanling Li, Xi Wei. Stability and bifurcation with singularity for a glycolysis model under no-flux boundary condition. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 5203-5224. doi: 10.3934/dcdsb.2019129

[8]

Nicolas Vauchelet. Numerical simulation of a kinetic model for chemotaxis. Kinetic & Related Models, 2010, 3 (3) : 501-528. doi: 10.3934/krm.2010.3.501

[9]

Hongying Shu, Lin Wang. Global stability and backward bifurcation of a general viral infection model with virus-driven proliferation of target cells. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1749-1768. doi: 10.3934/dcdsb.2014.19.1749

[10]

Kousuke Kuto. Stability and Hopf bifurcation of coexistence steady-states to an SKT model in spatially heterogeneous environment. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 489-509. doi: 10.3934/dcds.2009.24.489

[11]

Ana I. Muñoz, José Ignacio Tello. Mathematical analysis and numerical simulation of a model of morphogenesis. Mathematical Biosciences & Engineering, 2011, 8 (4) : 1035-1059. doi: 10.3934/mbe.2011.8.1035

[12]

Dieter Armbruster, Christian Ringhofer, Andrea Thatcher. A kinetic model for an agent based market simulation. Networks & Heterogeneous Media, 2015, 10 (3) : 527-542. doi: 10.3934/nhm.2015.10.527

[13]

Rolf Rannacher. A short course on numerical simulation of viscous flow: Discretization, optimization and stability analysis. Discrete & Continuous Dynamical Systems - S, 2012, 5 (6) : 1147-1194. doi: 10.3934/dcdss.2012.5.1147

[14]

Shubo Zhao, Ping Liu, Mingchao Jiang. Stability and bifurcation analysis in a chemotaxis bistable growth system. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1165-1174. doi: 10.3934/dcdss.2017063

[15]

Olivier Delestre, Arthur R. Ghigo, José-Maria Fullana, Pierre-Yves Lagrée. A shallow water with variable pressure model for blood flow simulation. Networks & Heterogeneous Media, 2016, 11 (1) : 69-87. doi: 10.3934/nhm.2016.11.69

[16]

Eleonora Messina. Numerical simulation of a SIS epidemic model based on a nonlinear Volterra integral equation. Conference Publications, 2015, 2015 (special) : 826-834. doi: 10.3934/proc.2015.0826

[17]

Maciek D. Korzec, Hao Wu. Analysis and simulation for an isotropic phase-field model describing grain growth. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2227-2246. doi: 10.3934/dcdsb.2014.19.2227

[18]

Xinxin Tan, Shujuan Li, Sisi Liu, Zhiwei Zhao, Lisa Huang, Jiatai Gang. Dynamic simulation of a SEIQR-V epidemic model based on cellular automata. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 327-337. doi: 10.3934/naco.2015.5.327

[19]

Gongfa Li, Wei Miao, Guozhang Jiang, Yinfeng Fang, Zhaojie Ju, Honghai Liu. Intelligent control model and its simulation of flue temperature in coke oven. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1223-1237. doi: 10.3934/dcdss.2015.8.1223

[20]

M. Hadjiandreou, Raul Conejeros, Vassilis S. Vassiliadis. Towards a long-term model construction for the dynamic simulation of HIV infection. Mathematical Biosciences & Engineering, 2007, 4 (3) : 489-504. doi: 10.3934/mbe.2007.4.489

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]