• Previous Article
    An optimal-order error estimate for a family of characteristic-mixed methods to transient convection-diffusion problems
  • DCDS-B Home
  • This Issue
  • Next Article
    Weak solution to compressible hydrodynamic flow of liquid crystals in dimension one
March  2011, 15(2): 343-355. doi: 10.3934/dcdsb.2011.15.343

Using the immersed boundary method to model complex fluids-structure interaction in sperm motility

1. 

Department of Mathematics, Washington State University, Pullman, WA 99164, United States, United States

Received  November 2009 Revised  January 2010 Published  December 2010

We describe work on the development of immersed boundary methods for sperm motility in complex fluids. This includes an Oldroyd-B formulation and a Lagrangian mesh method. We also describe the development of an immersed boundary rheometer for the studying the properties of viscoelastic fluids. We present preliminary simulation results for the Oldroyd-B and Lagrangian mesh rheometers and compare sperm motility in Newtonian, Oldroyd-B and Lagrangian mesh fluids using an existing immersed boundary model for sperm motility.
Citation: Robert H. Dillon, Jingxuan Zhuo. Using the immersed boundary method to model complex fluids-structure interaction in sperm motility. Discrete & Continuous Dynamical Systems - B, 2011, 15 (2) : 343-355. doi: 10.3934/dcdsb.2011.15.343
References:
[1]

E. Alpkvist and I. Klapper, Description of mechanical response including detachment using a novel particle method of biofilm/flow interaction,, Wat. Sci. Tech., 55 (2007), 265. doi: 10.2166/wst.2007.267. Google Scholar

[2]

D. C. Bottino, Modeling viscoelastic networks and cell deformation in the context of the immersed boundary method,, J. Comp. Phys., 147 (1998), 86. doi: 10.1006/jcph.1998.6074. Google Scholar

[3]

C. J. Brokaw, Computer simulation of flagellar movement. I. Demonstration of stable bend propagation and bend initiation by the sliding filament model,, Biophys. J., 12 (1972), 564. doi: 10.1016/S0006-3495(72)86104-6. Google Scholar

[4]

Charles J. Brokaw, Simulating the effects of fluid viscosity on the behavior of sperm flagella,, Math. Meth. Appl. Sci., 24 (2001), 1351. doi: 10.1002/mma.184. Google Scholar

[5]

Paul Dierckx, "Curve and Surface Fitting with Splines,", Monographs on Numerical Analysis, (1993). Google Scholar

[6]

R. Dillon, L. Fauci and C. Omoto, Internally-driven elastic model of a motile sperm-effects of viscosity and dynein activation on emergent waveform,, in preparation., (). Google Scholar

[7]

R. Dillon, L. Fauci, C. Omoto and X. Yang, Fluid dynamic models of flagellar and ciliary beating,, NYAS, 1101 (2007), 494. Google Scholar

[8]

R. Dillon, L. Fauci and X. Yang, Sperm motility and multiciliary beating: An integrative mechanical model,, Computers and Mathematics with Applications, 52 (2006), 749. doi: 10.1016/j.camwa.2006.10.012. Google Scholar

[9]

R. Dillon and L. J. Fauci, An integrative model of internal axoneme mechanics and external fluid dynamics in ciliary beating,, J. theor. Biol., 207 (2000), 415. doi: 10.1006/jtbi.2000.2182. Google Scholar

[10]

R. Dillon, L. J. Fauci and Charlotte Omoto, Mathematical modeling of axoneme mechanics and fluid dynamics in ciliary and sperm motility,, Dynamics of continuous, 10 (2003), 745. Google Scholar

[11]

Robert Dillon and Zhilin Li, "An Introduction to the Immersed Boundary and Immersed Interface Methods,", Lecture Note Series, (2009). Google Scholar

[12]

Robert H. Dillon and Lisa J. Fauci, An integrative model of internal axoneme mechanics and external fluid dynamics in ciliary beating,, Journal of Theoretical Biology, 207 (2000), 415. doi: 10.1006/jtbi.2000.2182. Google Scholar

[13]

Robert H. Dillon, Lisa J. Fauci and Charlotte Omoto, Mathematical modeling of axoneme mechanics and fluid dynamics in ciliary and sperm motility,, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 10 (2003), 745. Google Scholar

[14]

L. Fauci and R. Dillon, Biofluidmechanics of reproduction,, Annu. Rev. Fluid Mech., 38 (2006), 371. doi: 10.1146/annurev.fluid.37.061903.175725. Google Scholar

[15]

G. R. Fulford, D. F. Katz and R. L. Powell, Swimming of spermatozoa in a linear viscoelastic fluid,, Biorheology, 35 (1998), 295. doi: 10.1016/S0006-355X(99)80012-2. Google Scholar

[16]

H. Ho and S. Suarez, Hyperactivation of mammalian spermatozoa: function and regulation,, Reproduction, 122 (2001), 519. doi: 10.1530/rep.0.1220519. Google Scholar

[17]

Daniel D. Joseph, "Fluid Dynamics of Viscoelastic Liquids,", Springer-Verlag, (1990). Google Scholar

[18]

D. F. Katz, R. N. Mills and T. R. Pritchett, The movement of human spermatazoa in cervical mucus,, J. Reprod. Fertil., 53 (1978), 259. doi: 10.1530/jrf.0.0530259. Google Scholar

[19]

I. Klapper and E. Alpkvist, A computational parallel plate rheometer for inhomogenous biofilms,, manuscript (2007)., (2007). Google Scholar

[20]

Eric Lauga, Propulsion in a viscoelastic fluid,, Phys. Fluids, 19 (2007). doi: 10.1063/1.2751388. Google Scholar

[21]

M. Murase, "The Dynamics of Cellular Motility,", John Wiley, (1992). Google Scholar

[22]

Charles S. Peskin, The immersed boundary method,, Acta Numer., 11 (2002), 479. doi: 10.1017/CBO9780511550140.007. Google Scholar

[23]

J. Teran, L. Fauci and M. Shelley, Peristaltic pumping and irreversibility of a stokesian viscoelastic fluid,, Phys. Fluids, 20 (2008). doi: 10.1063/1.2963530. Google Scholar

[24]

J. Teran, L. Fauci and M. Shelley, Viscoelastic fluid response can increase the speed and efficiency of a free swimmer,, Phys. Rev. Lett., 104 (2010). doi: 10.1103/PhysRevLett.104.038101. Google Scholar

[25]

P. Verdugo, Polymer biophysics of mucus in cystic fibrosis,, Proceedings of the International Congress on Cilia, (1998), 167. Google Scholar

[26]

G. B. Witman, Introduction to cilia and flagella,, Ciliary and Flagellar Membranes (New York) (R. A. Bloodgood, (1990), 1. Google Scholar

show all references

References:
[1]

E. Alpkvist and I. Klapper, Description of mechanical response including detachment using a novel particle method of biofilm/flow interaction,, Wat. Sci. Tech., 55 (2007), 265. doi: 10.2166/wst.2007.267. Google Scholar

[2]

D. C. Bottino, Modeling viscoelastic networks and cell deformation in the context of the immersed boundary method,, J. Comp. Phys., 147 (1998), 86. doi: 10.1006/jcph.1998.6074. Google Scholar

[3]

C. J. Brokaw, Computer simulation of flagellar movement. I. Demonstration of stable bend propagation and bend initiation by the sliding filament model,, Biophys. J., 12 (1972), 564. doi: 10.1016/S0006-3495(72)86104-6. Google Scholar

[4]

Charles J. Brokaw, Simulating the effects of fluid viscosity on the behavior of sperm flagella,, Math. Meth. Appl. Sci., 24 (2001), 1351. doi: 10.1002/mma.184. Google Scholar

[5]

Paul Dierckx, "Curve and Surface Fitting with Splines,", Monographs on Numerical Analysis, (1993). Google Scholar

[6]

R. Dillon, L. Fauci and C. Omoto, Internally-driven elastic model of a motile sperm-effects of viscosity and dynein activation on emergent waveform,, in preparation., (). Google Scholar

[7]

R. Dillon, L. Fauci, C. Omoto and X. Yang, Fluid dynamic models of flagellar and ciliary beating,, NYAS, 1101 (2007), 494. Google Scholar

[8]

R. Dillon, L. Fauci and X. Yang, Sperm motility and multiciliary beating: An integrative mechanical model,, Computers and Mathematics with Applications, 52 (2006), 749. doi: 10.1016/j.camwa.2006.10.012. Google Scholar

[9]

R. Dillon and L. J. Fauci, An integrative model of internal axoneme mechanics and external fluid dynamics in ciliary beating,, J. theor. Biol., 207 (2000), 415. doi: 10.1006/jtbi.2000.2182. Google Scholar

[10]

R. Dillon, L. J. Fauci and Charlotte Omoto, Mathematical modeling of axoneme mechanics and fluid dynamics in ciliary and sperm motility,, Dynamics of continuous, 10 (2003), 745. Google Scholar

[11]

Robert Dillon and Zhilin Li, "An Introduction to the Immersed Boundary and Immersed Interface Methods,", Lecture Note Series, (2009). Google Scholar

[12]

Robert H. Dillon and Lisa J. Fauci, An integrative model of internal axoneme mechanics and external fluid dynamics in ciliary beating,, Journal of Theoretical Biology, 207 (2000), 415. doi: 10.1006/jtbi.2000.2182. Google Scholar

[13]

Robert H. Dillon, Lisa J. Fauci and Charlotte Omoto, Mathematical modeling of axoneme mechanics and fluid dynamics in ciliary and sperm motility,, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 10 (2003), 745. Google Scholar

[14]

L. Fauci and R. Dillon, Biofluidmechanics of reproduction,, Annu. Rev. Fluid Mech., 38 (2006), 371. doi: 10.1146/annurev.fluid.37.061903.175725. Google Scholar

[15]

G. R. Fulford, D. F. Katz and R. L. Powell, Swimming of spermatozoa in a linear viscoelastic fluid,, Biorheology, 35 (1998), 295. doi: 10.1016/S0006-355X(99)80012-2. Google Scholar

[16]

H. Ho and S. Suarez, Hyperactivation of mammalian spermatozoa: function and regulation,, Reproduction, 122 (2001), 519. doi: 10.1530/rep.0.1220519. Google Scholar

[17]

Daniel D. Joseph, "Fluid Dynamics of Viscoelastic Liquids,", Springer-Verlag, (1990). Google Scholar

[18]

D. F. Katz, R. N. Mills and T. R. Pritchett, The movement of human spermatazoa in cervical mucus,, J. Reprod. Fertil., 53 (1978), 259. doi: 10.1530/jrf.0.0530259. Google Scholar

[19]

I. Klapper and E. Alpkvist, A computational parallel plate rheometer for inhomogenous biofilms,, manuscript (2007)., (2007). Google Scholar

[20]

Eric Lauga, Propulsion in a viscoelastic fluid,, Phys. Fluids, 19 (2007). doi: 10.1063/1.2751388. Google Scholar

[21]

M. Murase, "The Dynamics of Cellular Motility,", John Wiley, (1992). Google Scholar

[22]

Charles S. Peskin, The immersed boundary method,, Acta Numer., 11 (2002), 479. doi: 10.1017/CBO9780511550140.007. Google Scholar

[23]

J. Teran, L. Fauci and M. Shelley, Peristaltic pumping and irreversibility of a stokesian viscoelastic fluid,, Phys. Fluids, 20 (2008). doi: 10.1063/1.2963530. Google Scholar

[24]

J. Teran, L. Fauci and M. Shelley, Viscoelastic fluid response can increase the speed and efficiency of a free swimmer,, Phys. Rev. Lett., 104 (2010). doi: 10.1103/PhysRevLett.104.038101. Google Scholar

[25]

P. Verdugo, Polymer biophysics of mucus in cystic fibrosis,, Proceedings of the International Congress on Cilia, (1998), 167. Google Scholar

[26]

G. B. Witman, Introduction to cilia and flagella,, Ciliary and Flagellar Membranes (New York) (R. A. Bloodgood, (1990), 1. Google Scholar

[1]

V. Afraimovich, J. Schmeling, Edgardo Ugalde, Jesús Urías. Spectra of dimensions for Poincaré recurrences. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 901-914. doi: 10.3934/dcds.2000.6.901

[2]

B. Fernandez, E. Ugalde, J. Urías. Spectrum of dimensions for Poincaré recurrences of Markov maps. Discrete & Continuous Dynamical Systems - A, 2002, 8 (4) : 835-849. doi: 10.3934/dcds.2002.8.835

[3]

Juan Wang, Xiaodan Zhang, Yun Zhao. Dimension estimates for arbitrary subsets of limit sets of a Markov construction and related multifractal analysis. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2315-2332. doi: 10.3934/dcds.2014.34.2315

[4]

Godofredo Iommi, Bartłomiej Skorulski. Multifractal analysis for the exponential family. Discrete & Continuous Dynamical Systems - A, 2006, 16 (4) : 857-869. doi: 10.3934/dcds.2006.16.857

[5]

V. Afraimovich, Jean-René Chazottes, Benoît Saussol. Pointwise dimensions for Poincaré recurrences associated with maps and special flows. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 263-280. doi: 10.3934/dcds.2003.9.263

[6]

Julien Barral, Yan-Hui Qu. On the higher-dimensional multifractal analysis. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 1977-1995. doi: 10.3934/dcds.2012.32.1977

[7]

Mario Roy, Mariusz Urbański. Multifractal analysis for conformal graph directed Markov systems. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 627-650. doi: 10.3934/dcds.2009.25.627

[8]

Zhihui Yuan. Multifractal analysis of random weak Gibbs measures. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5367-5405. doi: 10.3934/dcds.2017234

[9]

Luis Barreira. Dimension theory of flows: A survey. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3345-3362. doi: 10.3934/dcdsb.2015.20.3345

[10]

Luis Barreira, César Silva. Lyapunov exponents for continuous transformations and dimension theory. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 469-490. doi: 10.3934/dcds.2005.13.469

[11]

Valentin Afraimovich, Jean-Rene Chazottes and Benoit Saussol. Local dimensions for Poincare recurrences. Electronic Research Announcements, 2000, 6: 64-74.

[12]

Mirela Domijan, Markus Kirkilionis. Graph theory and qualitative analysis of reaction networks. Networks & Heterogeneous Media, 2008, 3 (2) : 295-322. doi: 10.3934/nhm.2008.3.295

[13]

Jean-Pierre Francoise, Claude Piquet. Global recurrences of multi-time scaled systems. Conference Publications, 2011, 2011 (Special) : 430-436. doi: 10.3934/proc.2011.2011.430

[14]

Jerrold E. Marsden, Alexey Tret'yakov. Factor analysis of nonlinear mappings: p-regularity theory. Communications on Pure & Applied Analysis, 2003, 2 (4) : 425-445. doi: 10.3934/cpaa.2003.2.425

[15]

Lars Olsen. First return times: multifractal spectra and divergence points. Discrete & Continuous Dynamical Systems - A, 2004, 10 (3) : 635-656. doi: 10.3934/dcds.2004.10.635

[16]

Imen Bhouri, Houssem Tlili. On the multifractal formalism for Bernoulli products of invertible matrices. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1129-1145. doi: 10.3934/dcds.2009.24.1129

[17]

Eva Miranda, Romero Solha. A Poincaré lemma in geometric quantisation. Journal of Geometric Mechanics, 2013, 5 (4) : 473-491. doi: 10.3934/jgm.2013.5.473

[18]

Jiahang Che, Li Chen, Simone GÖttlich, Anamika Pandey, Jing Wang. Boundary layer analysis from the Keller-Segel system to the aggregation system in one space dimension. Communications on Pure & Applied Analysis, 2017, 16 (3) : 1013-1036. doi: 10.3934/cpaa.2017049

[19]

João Lopes Dias. Brjuno condition and renormalization for Poincaré flows. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 641-656. doi: 10.3934/dcds.2006.15.641

[20]

Antonio Giorgilli, Stefano Marmi. Convergence radius in the Poincaré-Siegel problem. Discrete & Continuous Dynamical Systems - S, 2010, 3 (4) : 601-621. doi: 10.3934/dcdss.2010.3.601

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]