January  2011, 15(1): 171-196. doi: 10.3934/dcdsb.2011.15.171

Traveling wave solutions for Lotka-Volterra system re-visited

1. 

Department of Mathematical Sciences, University of Cincinnati, Cincinnati, OH 45219, United States

2. 

Department of Mathematics and Statistics, University of North Carolina at Wilmington, Wilmington, NC 28403

3. 

Department of Mathematics and Statistics, UNC Wilmington, Wilmington, NC 28403

Received  December 2009 Revised  September 2010 Published  October 2010

Using a new method of monotone iteration of a pair of smooth lower- and upper-solutions, the traveling wave solutions of the classical Lotka-Volterra system are shown to exist for a family of wave speeds. Such constructed upper and lower solution pair enables us to derive the explicit value of the minimal (critical) wave speed as well as the asymptotic decay/growth rates of the wave solutions at infinities. Furthermore, the traveling wave corresponding to each wave speed is unique up to a translation of the origin. The stability of the traveling wave solutions with non-critical wave speed is also studied by spectral analysis of a linearized operator in exponentially weighted Banach spaces.
Citation: Anthony W. Leung, Xiaojie Hou, Wei Feng. Traveling wave solutions for Lotka-Volterra system re-visited. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 171-196. doi: 10.3934/dcdsb.2011.15.171
References:
[1]

J. C. Alexander, R. A. Gardner and C. K. R. T. Jones, A topological invariant arising in the stability analysis of traveling waves,, J. Reine Angew Math., 410 (1990), 167. Google Scholar

[2]

P. W. Bates and F. Chen, Spectral analysis and multidimensional stability of traveling waves for nonlocal Allen-Cahn equation,, J. Math. Anal. Appl., 273 (2002), 45. doi: doi:10.1016/S0022-247X(02)00205-6. Google Scholar

[3]

A. Boumenir and V. Nguyen, Perron theorem in monotone iteration method for traveling waves in delayed reaction-diffusion equations,, Journal of Differential Equations, 244 (2008), 1551. doi: doi:10.1016/j.jde.2008.01.004. Google Scholar

[4]

E. Coddington and N. Levinson, "Theory of Ordinary Differential Equations,", McGraw-Hill, (1955). Google Scholar

[5]

N. Fei and J. Carr, Existence of travelling waves with their minimal speed for a diffusing Lotka-Volterra system,, Nonlinear Analysis: Real World Applications, 4 (2003), 503. doi: doi:10.1016/S1468-1218(02)00077-9. Google Scholar

[6]

D. Henry, "Geometric Theory of Semilinear Parabolic Equations,", Lecture notes in Mathematics, 840 (1981). Google Scholar

[7]

Y. Hosono, Travelling waves for a diffusive Lotka-Volterra competition model I: Singular perturbations,, Discrete Continuous Dynamical Systems - B, 3 (2003), 79. Google Scholar

[8]

J. I. Kanel, On the wave front of a competition-diffusion system in popalation dynamics,, Nonlinear Analysis: Theory, 65 (2006), 301. Google Scholar

[9]

J. I. Kanel and L. Zhou, Existence of wave front solutions and estimates of wave speed for a competition-diffusion system,, Nonlinear Analysis: Theory, 27 (1996), 579. Google Scholar

[10]

Y. Kan-on, Note on propagation speed of travelling waves for a weakly coupled parabolic system,, Nonlinear Analysis, 44 (2001), 239. doi: doi:10.1016/S0362-546X(99)00261-8. Google Scholar

[11]

Y. Kan-on, Note on propagation speed of travelling waves for a weakly coupled parabolic system,, Nonlinear Analysis: Theory, 44 (2001), 239. Google Scholar

[12]

T. Kapitula, On the stability of Traveling waves in weighted $L^{\infty}$ spaces,, Journal of Differential Equations, 112 (1994), 179. doi: doi:10.1006/jdeq.1994.1100. Google Scholar

[13]

G. A. Klaasen and W. Troy, The stability of traveling front solutions of a reaction-diffusion system,, SIAM J. Appl-. Math, 41 (1981), 145. doi: doi:10.1137/0141011. Google Scholar

[14]

A. Kolmogorov, A. Petrovskii and N. Piskunov, A study of the equation of diffusion with increase in the quantity of matter,, Bjul. Moskovskovo Gov. Iniv., 17 (1937), 1. Google Scholar

[15]

A. Leung, X. Hou and Y. Li, Exclusive traveling waves for competitive reaction-diffusion systems and their stabilities,, J. Math. Anal. Appl., 338 (2008), 902. doi: doi:10.1016/j.jmaa.2007.05.066. Google Scholar

[16]

A. Leung, "Systems of Nonlinear Partial Differential Equations: Applications to Biology and Engineering,", MIA, (1989). Google Scholar

[17]

A. Leung, "Nonlinear Systems of Partial Differential Equations: Applications to Life and Physical Sciences,", World Scientific, (2009). doi: doi:10.1142/9789814277709. Google Scholar

[18]

S. Ma, X. Zhao, Global asymptotic stability of minimal fronts in monostable lattice equations,, Discrete Contin. Dyn. Syst., 21 (2008), 259. doi: doi:10.3934/dcds.2008.21.259. Google Scholar

[19]

C. V. Pao, "Nonlinear Parabolic and Elliptic Equations,", Plenum Press, (1992). Google Scholar

[20]

R. Pego and M. Weinstein, Eigenvalues and instabilities of solitary waves,, Phil. Trans. R soc. London A, 340 (1992), 47. doi: doi:10.1098/rsta.1992.0055. Google Scholar

[21]

B. Sandstede, Stability of traveling waves,, in, (2002), 983. doi: doi:10.1016/S1874-575X(02)80039-X. Google Scholar

[22]

D. Sattinger, On the stability of traveling waves of nonlinear parabolic systems,, Advances in Mathematics, 22 (1976), 312. doi: doi:10.1016/0001-8708(76)90098-0. Google Scholar

[23]

M. M. Tang and P. C. Fife, Propagating fronts for competing species equations with diffusion,, Arch. Rat. Mech. Anal., 73 (1980), 69. doi: doi:10.1007/BF00283257. Google Scholar

[24]

T. Gallay, Local stability of critical fronts in nonlinear parabolic partial differential equations,, Nonlinearity, 7 (1994), 741. doi: doi:10.1088/0951-7715/7/3/003. Google Scholar

[25]

A. Volpert, V. Volpert and V. Volpert, "Traveling Wave Solutions of Parabolic Systems,", Transl. Math. Monograhs, 140 (1994). Google Scholar

[26]

J. Wu and X. Zou, Traveling wave fronts of reaction-diffusion systems with delay,, Journal of Dynamics and Differential Equations, 13 (2001), 651. Google Scholar

[27]

Y. Wu and Y. Li, Stability of travelling waves with noncritical speeds for double degenerate Fisher-type equations,, Discrete Continuous Dynamical Systems - B, 10 (2008), 149. Google Scholar

[28]

Y. Wu, X. Xing and Q. Ye, Stability of travelling waves with algebraic decay for $n$-degree Fisher-type equations,, Discrete and Continuous Dynamical Systems - B, 16 (2006), 47. Google Scholar

[29]

D. Xu and X. Q. Zhao, Bistable waves in an epidemic model,, Journal of Dynamics and Differential Equations, 16 (2004), 679. doi: doi:10.1007/s10884-005-6294-0. Google Scholar

show all references

References:
[1]

J. C. Alexander, R. A. Gardner and C. K. R. T. Jones, A topological invariant arising in the stability analysis of traveling waves,, J. Reine Angew Math., 410 (1990), 167. Google Scholar

[2]

P. W. Bates and F. Chen, Spectral analysis and multidimensional stability of traveling waves for nonlocal Allen-Cahn equation,, J. Math. Anal. Appl., 273 (2002), 45. doi: doi:10.1016/S0022-247X(02)00205-6. Google Scholar

[3]

A. Boumenir and V. Nguyen, Perron theorem in monotone iteration method for traveling waves in delayed reaction-diffusion equations,, Journal of Differential Equations, 244 (2008), 1551. doi: doi:10.1016/j.jde.2008.01.004. Google Scholar

[4]

E. Coddington and N. Levinson, "Theory of Ordinary Differential Equations,", McGraw-Hill, (1955). Google Scholar

[5]

N. Fei and J. Carr, Existence of travelling waves with their minimal speed for a diffusing Lotka-Volterra system,, Nonlinear Analysis: Real World Applications, 4 (2003), 503. doi: doi:10.1016/S1468-1218(02)00077-9. Google Scholar

[6]

D. Henry, "Geometric Theory of Semilinear Parabolic Equations,", Lecture notes in Mathematics, 840 (1981). Google Scholar

[7]

Y. Hosono, Travelling waves for a diffusive Lotka-Volterra competition model I: Singular perturbations,, Discrete Continuous Dynamical Systems - B, 3 (2003), 79. Google Scholar

[8]

J. I. Kanel, On the wave front of a competition-diffusion system in popalation dynamics,, Nonlinear Analysis: Theory, 65 (2006), 301. Google Scholar

[9]

J. I. Kanel and L. Zhou, Existence of wave front solutions and estimates of wave speed for a competition-diffusion system,, Nonlinear Analysis: Theory, 27 (1996), 579. Google Scholar

[10]

Y. Kan-on, Note on propagation speed of travelling waves for a weakly coupled parabolic system,, Nonlinear Analysis, 44 (2001), 239. doi: doi:10.1016/S0362-546X(99)00261-8. Google Scholar

[11]

Y. Kan-on, Note on propagation speed of travelling waves for a weakly coupled parabolic system,, Nonlinear Analysis: Theory, 44 (2001), 239. Google Scholar

[12]

T. Kapitula, On the stability of Traveling waves in weighted $L^{\infty}$ spaces,, Journal of Differential Equations, 112 (1994), 179. doi: doi:10.1006/jdeq.1994.1100. Google Scholar

[13]

G. A. Klaasen and W. Troy, The stability of traveling front solutions of a reaction-diffusion system,, SIAM J. Appl-. Math, 41 (1981), 145. doi: doi:10.1137/0141011. Google Scholar

[14]

A. Kolmogorov, A. Petrovskii and N. Piskunov, A study of the equation of diffusion with increase in the quantity of matter,, Bjul. Moskovskovo Gov. Iniv., 17 (1937), 1. Google Scholar

[15]

A. Leung, X. Hou and Y. Li, Exclusive traveling waves for competitive reaction-diffusion systems and their stabilities,, J. Math. Anal. Appl., 338 (2008), 902. doi: doi:10.1016/j.jmaa.2007.05.066. Google Scholar

[16]

A. Leung, "Systems of Nonlinear Partial Differential Equations: Applications to Biology and Engineering,", MIA, (1989). Google Scholar

[17]

A. Leung, "Nonlinear Systems of Partial Differential Equations: Applications to Life and Physical Sciences,", World Scientific, (2009). doi: doi:10.1142/9789814277709. Google Scholar

[18]

S. Ma, X. Zhao, Global asymptotic stability of minimal fronts in monostable lattice equations,, Discrete Contin. Dyn. Syst., 21 (2008), 259. doi: doi:10.3934/dcds.2008.21.259. Google Scholar

[19]

C. V. Pao, "Nonlinear Parabolic and Elliptic Equations,", Plenum Press, (1992). Google Scholar

[20]

R. Pego and M. Weinstein, Eigenvalues and instabilities of solitary waves,, Phil. Trans. R soc. London A, 340 (1992), 47. doi: doi:10.1098/rsta.1992.0055. Google Scholar

[21]

B. Sandstede, Stability of traveling waves,, in, (2002), 983. doi: doi:10.1016/S1874-575X(02)80039-X. Google Scholar

[22]

D. Sattinger, On the stability of traveling waves of nonlinear parabolic systems,, Advances in Mathematics, 22 (1976), 312. doi: doi:10.1016/0001-8708(76)90098-0. Google Scholar

[23]

M. M. Tang and P. C. Fife, Propagating fronts for competing species equations with diffusion,, Arch. Rat. Mech. Anal., 73 (1980), 69. doi: doi:10.1007/BF00283257. Google Scholar

[24]

T. Gallay, Local stability of critical fronts in nonlinear parabolic partial differential equations,, Nonlinearity, 7 (1994), 741. doi: doi:10.1088/0951-7715/7/3/003. Google Scholar

[25]

A. Volpert, V. Volpert and V. Volpert, "Traveling Wave Solutions of Parabolic Systems,", Transl. Math. Monograhs, 140 (1994). Google Scholar

[26]

J. Wu and X. Zou, Traveling wave fronts of reaction-diffusion systems with delay,, Journal of Dynamics and Differential Equations, 13 (2001), 651. Google Scholar

[27]

Y. Wu and Y. Li, Stability of travelling waves with noncritical speeds for double degenerate Fisher-type equations,, Discrete Continuous Dynamical Systems - B, 10 (2008), 149. Google Scholar

[28]

Y. Wu, X. Xing and Q. Ye, Stability of travelling waves with algebraic decay for $n$-degree Fisher-type equations,, Discrete and Continuous Dynamical Systems - B, 16 (2006), 47. Google Scholar

[29]

D. Xu and X. Q. Zhao, Bistable waves in an epidemic model,, Journal of Dynamics and Differential Equations, 16 (2004), 679. doi: doi:10.1007/s10884-005-6294-0. Google Scholar

[1]

Guangying Lv, Mingxin Wang. Existence, uniqueness and stability of traveling wave fronts of discrete quasi-linear equations with delay. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 415-433. doi: 10.3934/dcdsb.2010.13.415

[2]

Rui Huang, Ming Mei, Kaijun Zhang, Qifeng Zhang. Asymptotic stability of non-monotone traveling waves for time-delayed nonlocal dispersion equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1331-1353. doi: 10.3934/dcds.2016.36.1331

[3]

Hongmei Cheng, Rong Yuan. Existence and asymptotic stability of traveling fronts for nonlocal monostable evolution equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 3007-3022. doi: 10.3934/dcdsb.2017160

[4]

Telma Silva, Adélia Sequeira, Rafael F. Santos, Jorge Tiago. Existence, uniqueness, stability and asymptotic behavior of solutions for a mathematical model of atherosclerosis. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 343-362. doi: 10.3934/dcdss.2016.9.343

[5]

Kun Li, Jianhua Huang, Xiong Li. Asymptotic behavior and uniqueness of traveling wave fronts in a delayed nonlocal dispersal competitive system. Communications on Pure & Applied Analysis, 2017, 16 (1) : 131-150. doi: 10.3934/cpaa.2017006

[6]

Je-Chiang Tsai. Global exponential stability of traveling waves in monotone bistable systems. Discrete & Continuous Dynamical Systems - A, 2008, 21 (2) : 601-623. doi: 10.3934/dcds.2008.21.601

[7]

Alfonso Castro, Benjamin Preskill. Existence of solutions for a semilinear wave equation with non-monotone nonlinearity. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 649-658. doi: 10.3934/dcds.2010.28.649

[8]

Xin Lai, Xinfu Chen, Mingxin Wang, Cong Qin, Yajing Zhang. Existence, uniqueness, and stability of bubble solutions of a chemotaxis model. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 805-832. doi: 10.3934/dcds.2016.36.805

[9]

Aaron Hoffman, Benjamin Kennedy. Existence and uniqueness of traveling waves in a class of unidirectional lattice differential equations. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 137-167. doi: 10.3934/dcds.2011.30.137

[10]

Fengxin Chen. Stability and uniqueness of traveling waves for system of nonlocal evolution equations with bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2009, 24 (3) : 659-673. doi: 10.3934/dcds.2009.24.659

[11]

Yan Cui, Zhiqiang Wang. Asymptotic stability of wave equations coupled by velocities. Mathematical Control & Related Fields, 2016, 6 (3) : 429-446. doi: 10.3934/mcrf.2016010

[12]

Zhao-Xing Yang, Guo-Bao Zhang, Ge Tian, Zhaosheng Feng. Stability of non-monotone non-critical traveling waves in discrete reaction-diffusion equations with time delay. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 581-603. doi: 10.3934/dcdss.2017029

[13]

Zengji Du, Zhaosheng Feng. Existence and asymptotic behaviors of traveling waves of a modified vector-disease model. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1899-1920. doi: 10.3934/cpaa.2018090

[14]

Matteo Bonforte, Yannick Sire, Juan Luis Vázquez. Existence, uniqueness and asymptotic behaviour for fractional porous medium equations on bounded domains. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5725-5767. doi: 10.3934/dcds.2015.35.5725

[15]

Cunming Liu, Jianli Liu. Stability of traveling wave solutions to Cauchy problem of diagnolizable quasilinear hyperbolic systems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4735-4749. doi: 10.3934/dcds.2014.34.4735

[16]

Jonathan E. Rubin. A nonlocal eigenvalue problem for the stability of a traveling wave in a neuronal medium. Discrete & Continuous Dynamical Systems - A, 2004, 10 (4) : 925-940. doi: 10.3934/dcds.2004.10.925

[17]

Oliver Knill. Singular continuous spectrum and quantitative rates of weak mixing. Discrete & Continuous Dynamical Systems - A, 1998, 4 (1) : 33-42. doi: 10.3934/dcds.1998.4.33

[18]

José Caicedo, Alfonso Castro, Rodrigo Duque, Arturo Sanjuán. Existence of $L^p$-solutions for a semilinear wave equation with non-monotone nonlinearity. Discrete & Continuous Dynamical Systems - S, 2014, 7 (6) : 1193-1202. doi: 10.3934/dcdss.2014.7.1193

[19]

Hongbin Chen, Yi Li. Existence, uniqueness, and stability of periodic solutions of an equation of duffing type. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 793-807. doi: 10.3934/dcds.2007.18.793

[20]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (15)

Other articles
by authors

[Back to Top]