September  2009, 12(2): 279-304. doi: 10.3934/dcdsb.2009.12.279

The impact of vaccination and coinfection on HPV and cervical cancer

1. 

University of Texas at Arlington, Box 19408, Arlington, TX 76019-0408, United States, United States

Received  October 2008 Published  July 2009

Understanding the relationship between coinfection with multiple strains of human papillomavirus and cervical cancer may play a key role in vaccination strategies for the virus. In this article we formulate a model with two strains of infection and vaccination for one of the strains (strain 1, oncogenic) in order to investigate how multiple strains of HPV and vaccination may affect the number of cervical cancer cases and deaths due to infections with both types of HPV. We calculate the basic reproductive number $R_i$ for both strains independently as well as the basic reproductive number for the system based on $R_1$ and $R_2$. We also compute the invasion reproductive number Ř i for strain i when strain j is at endemic equilibrium ($i\ne j$). We show that the disease-free equilibrium is locally stable when $R_0=max\{R_1,R_2\}<1$ and each single strain endemic equilibrium $E_i$ exists when $R_i>1$. We determine stability of the single strain equilibria using the invasion reproductive numbers. The $R_1,R_2$ parameter space is partitioned into 4 regions by the curves $R_1=1, R_2=1,$ Ř 1 = 1, and Ř 2 = 1. In each region a different equilibrium is dominant. The presence of strain 2 can increase strain 1 related cancer deaths by more than 100 percent, but strain 2 prevalence can be reduced by more than 90 percent with 50 percent vaccination coverage. Under certain conditions, we show that vaccination against strain 1 can actually eradicate strain 2.
Citation: Britnee Crawford, Christopher M. Kribs-Zaleta. The impact of vaccination and coinfection on HPV and cervical cancer. Discrete & Continuous Dynamical Systems - B, 2009, 12 (2) : 279-304. doi: 10.3934/dcdsb.2009.12.279
[1]

Timothy C. Reluga, Jan Medlock, Alison Galvani. The discounted reproductive number for epidemiology. Mathematical Biosciences & Engineering, 2009, 6 (2) : 377-393. doi: 10.3934/mbe.2009.6.377

[2]

Ariel Cintrón-Arias, Carlos Castillo-Chávez, Luís M. A. Bettencourt, Alun L. Lloyd, H. T. Banks. The estimation of the effective reproductive number from disease outbreak data. Mathematical Biosciences & Engineering, 2009, 6 (2) : 261-282. doi: 10.3934/mbe.2009.6.261

[3]

Xavier Bardina, Sílvia Cuadrado, Carles Rovira. Coinfection in a stochastic model for bacteriophage systems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (12) : 6607-6620. doi: 10.3934/dcdsb.2019158

[4]

Wen Jin, Horst R. Thieme. Persistence and extinction of diffusing populations with two sexes and short reproductive season. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3209-3218. doi: 10.3934/dcdsb.2014.19.3209

[5]

Cristiana J. Silva, Delfim F. M. Torres. A TB-HIV/AIDS coinfection model and optimal control treatment. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4639-4663. doi: 10.3934/dcds.2015.35.4639

[6]

Oluwaseun Sharomi, Chandra N. Podder, Abba B. Gumel, Baojun Song. Mathematical analysis of the transmission dynamics of HIV/TB coinfection in the presence of treatment. Mathematical Biosciences & Engineering, 2008, 5 (1) : 145-174. doi: 10.3934/mbe.2008.5.145

[7]

Julijana Gjorgjieva, Kelly Smith, Gerardo Chowell, Fabio Sánchez, Jessica Snyder, Carlos Castillo-Chavez. The Role of Vaccination in the Control of SARS. Mathematical Biosciences & Engineering, 2005, 2 (4) : 753-769. doi: 10.3934/mbe.2005.2.753

[8]

Dennis L. Chao, Dobromir T. Dimitrov. Seasonality and the effectiveness of mass vaccination. Mathematical Biosciences & Engineering, 2016, 13 (2) : 249-259. doi: 10.3934/mbe.2015001

[9]

Najat Ziyadi. A male-female mathematical model of human papillomavirus (HPV) in African American population. Mathematical Biosciences & Engineering, 2017, 14 (1) : 339-358. doi: 10.3934/mbe.2017022

[10]

Kentarou Fujie, Akio Ito, Michael Winkler, Tomomi Yokota. Stabilization in a chemotaxis model for tumor invasion. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 151-169. doi: 10.3934/dcds.2016.36.151

[11]

Matthew H. Chan, Peter S. Kim, Robert Marangell. Stability of travelling waves in a Wolbachia invasion. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 609-628. doi: 10.3934/dcdsb.2018036

[12]

Bruno Buonomo. A simple analysis of vaccination strategies for rubella. Mathematical Biosciences & Engineering, 2011, 8 (3) : 677-687. doi: 10.3934/mbe.2011.8.677

[13]

Eunha Shim. Prioritization of delayed vaccination for pandemic influenza. Mathematical Biosciences & Engineering, 2011, 8 (1) : 95-112. doi: 10.3934/mbe.2011.8.95

[14]

Ebenezer Bonyah, Samuel Kwesi Asiedu. Analysis of a Lymphatic filariasis-schistosomiasis coinfection with public health dynamics: Model obtained through Mittag-Leffler function. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 519-537. doi: 10.3934/dcdss.2020029

[15]

Zhilan Feng, Wenzhang Huang, Donald L. DeAngelis. Spatially heterogeneous invasion of toxic plant mediated by herbivory. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1519-1538. doi: 10.3934/mbe.2013.10.1519

[16]

Janet Dyson, Eva Sánchez, Rosanna Villella-Bressan, Glenn F. Webb. An age and spatially structured model of tumor invasion with haptotaxis. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 45-60. doi: 10.3934/dcdsb.2007.8.45

[17]

Mohammad El Smaily, François Hamel, Lionel Roques. Homogenization and influence of fragmentation in a biological invasion model. Discrete & Continuous Dynamical Systems - A, 2009, 25 (1) : 321-342. doi: 10.3934/dcds.2009.25.321

[18]

Hao Wang, Katherine Dunning, James J. Elser, Yang Kuang. Daphnia species invasion, competitive exclusion, and chaotic coexistence. Discrete & Continuous Dynamical Systems - B, 2009, 12 (2) : 481-493. doi: 10.3934/dcdsb.2009.12.481

[19]

Natalia L. Komarova. Spatial stochastic models of cancer: Fitness, migration, invasion. Mathematical Biosciences & Engineering, 2013, 10 (3) : 761-775. doi: 10.3934/mbe.2013.10.761

[20]

Wan-Tong Li, Li Zhang, Guo-Bao Zhang. Invasion entire solutions in a competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1531-1560. doi: 10.3934/dcds.2015.35.1531

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (11)

[Back to Top]