
Previous Article
Predicting the drug release kinetics of matrix tablets
 DCDSB Home
 This Issue

Next Article
Mathematical modelling of internal HIV dynamics
The impact of vaccination and coinfection on HPV and cervical cancer
1.  University of Texas at Arlington, Box 19408, Arlington, TX 760190408, United States, United States 
[1] 
Timothy C. Reluga, Jan Medlock, Alison Galvani. The discounted reproductive number for epidemiology. Mathematical Biosciences & Engineering, 2009, 6 (2) : 377393. doi: 10.3934/mbe.2009.6.377 
[2] 
Ariel CintrónArias, Carlos CastilloChávez, Luís M. A. Bettencourt, Alun L. Lloyd, H. T. Banks. The estimation of the effective reproductive number from disease outbreak data. Mathematical Biosciences & Engineering, 2009, 6 (2) : 261282. doi: 10.3934/mbe.2009.6.261 
[3] 
Wen Jin, Horst R. Thieme. Persistence and extinction of diffusing populations with two sexes and short reproductive season. Discrete & Continuous Dynamical Systems  B, 2014, 19 (10) : 32093218. doi: 10.3934/dcdsb.2014.19.3209 
[4] 
Cristiana J. Silva, Delfim F. M. Torres. A TBHIV/AIDS coinfection model and optimal control treatment. Discrete & Continuous Dynamical Systems  A, 2015, 35 (9) : 46394663. doi: 10.3934/dcds.2015.35.4639 
[5] 
Oluwaseun Sharomi, Chandra N. Podder, Abba B. Gumel, Baojun Song. Mathematical analysis of the transmission dynamics of HIV/TB coinfection in the presence of treatment. Mathematical Biosciences & Engineering, 2008, 5 (1) : 145174. doi: 10.3934/mbe.2008.5.145 
[6] 
Julijana Gjorgjieva, Kelly Smith, Gerardo Chowell, Fabio Sánchez, Jessica Snyder, Carlos CastilloChavez. The Role of Vaccination in the Control of SARS. Mathematical Biosciences & Engineering, 2005, 2 (4) : 753769. doi: 10.3934/mbe.2005.2.753 
[7] 
Dennis L. Chao, Dobromir T. Dimitrov. Seasonality and the effectiveness of mass vaccination. Mathematical Biosciences & Engineering, 2016, 13 (2) : 249259. doi: 10.3934/mbe.2015001 
[8] 
Najat Ziyadi. A malefemale mathematical model of human papillomavirus (HPV) in African American population. Mathematical Biosciences & Engineering, 2017, 14 (1) : 339358. doi: 10.3934/mbe.2017022 
[9] 
Kentarou Fujie, Akio Ito, Michael Winkler, Tomomi Yokota. Stabilization in a chemotaxis model for tumor invasion. Discrete & Continuous Dynamical Systems  A, 2016, 36 (1) : 151169. doi: 10.3934/dcds.2016.36.151 
[10] 
Matthew H. Chan, Peter S. Kim, Robert Marangell. Stability of travelling waves in a Wolbachia invasion. Discrete & Continuous Dynamical Systems  B, 2018, 23 (2) : 609628. doi: 10.3934/dcdsb.2018036 
[11] 
Ebenezer Bonyah, Samuel Kwesi Asiedu. Analysis of a Lymphatic filariasisschistosomiasis coinfection with public health dynamics: Model obtained through MittagLeffler function. Discrete & Continuous Dynamical Systems  S, 2018, 0 (0) : 519537. doi: 10.3934/dcdss.2020029 
[12] 
Bruno Buonomo. A simple analysis of vaccination strategies for rubella. Mathematical Biosciences & Engineering, 2011, 8 (3) : 677687. doi: 10.3934/mbe.2011.8.677 
[13] 
Eunha Shim. Prioritization of delayed vaccination for pandemic influenza. Mathematical Biosciences & Engineering, 2011, 8 (1) : 95112. doi: 10.3934/mbe.2011.8.95 
[14] 
Zhilan Feng, Wenzhang Huang, Donald L. DeAngelis. Spatially heterogeneous invasion of toxic plant mediated by herbivory. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 15191538. doi: 10.3934/mbe.2013.10.1519 
[15] 
Janet Dyson, Eva Sánchez, Rosanna VillellaBressan, Glenn F. Webb. An age and spatially structured model of tumor invasion with haptotaxis. Discrete & Continuous Dynamical Systems  B, 2007, 8 (1) : 4560. doi: 10.3934/dcdsb.2007.8.45 
[16] 
Mohammad El Smaily, François Hamel, Lionel Roques. Homogenization and influence of fragmentation in a biological invasion model. Discrete & Continuous Dynamical Systems  A, 2009, 25 (1) : 321342. doi: 10.3934/dcds.2009.25.321 
[17] 
Hao Wang, Katherine Dunning, James J. Elser, Yang Kuang. Daphnia species invasion, competitive exclusion, and chaotic coexistence. Discrete & Continuous Dynamical Systems  B, 2009, 12 (2) : 481493. doi: 10.3934/dcdsb.2009.12.481 
[18] 
Natalia L. Komarova. Spatial stochastic models of cancer: Fitness, migration, invasion. Mathematical Biosciences & Engineering, 2013, 10 (3) : 761775. doi: 10.3934/mbe.2013.10.761 
[19] 
WanTong Li, Li Zhang, GuoBao Zhang. Invasion entire solutions in a competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems  A, 2015, 35 (4) : 15311560. doi: 10.3934/dcds.2015.35.1531 
[20] 
M.A.J Chaplain, G. Lolas. Mathematical modelling of cancer invasion of tissue: dynamic heterogeneity. Networks & Heterogeneous Media, 2006, 1 (3) : 399439. doi: 10.3934/nhm.2006.1.399 
2018 Impact Factor: 1.008
Tools
Metrics
Other articles
by authors
[Back to Top]