
Previous Article
KPP fronts in a onedimensional random drift
 DCDSB Home
 This Issue

Next Article
Study on selfadaptive proportional control method for a class of output models
The role of processing speed in determining step patterns during directional epitaxy
1.  Department of Mathematics, University of Tennessee, Knoxville, TN, 37996, United States 
2.  Department of Mathematics, University of Tennessee, 121 Ayres Hall, 1403 Circle Drive, Knoxville, TN 37996, United States 
[1] 
Guillaume Bal, Ian Langmore, Youssef Marzouk. Bayesian inverse problems with Monte Carlo forward models. Inverse Problems & Imaging, 2013, 7 (1) : 81105. doi: 10.3934/ipi.2013.7.81 
[2] 
Giacomo Dimarco. The moment guided Monte Carlo method for the Boltzmann equation. Kinetic & Related Models, 2013, 6 (2) : 291315. doi: 10.3934/krm.2013.6.291 
[3] 
Jiakou Wang, Margaret J. Slattery, Meghan Henty Hoskins, Shile Liang, Cheng Dong, Qiang Du. Monte carlo simulation of heterotypic cell aggregation in nonlinear shear flow. Mathematical Biosciences & Engineering, 2006, 3 (4) : 683696. doi: 10.3934/mbe.2006.3.683 
[4] 
Michael B. Giles, Kristian Debrabant, Andreas Rössler. Analysis of multilevel Monte Carlo path simulation using the Milstein discretisation. Discrete & Continuous Dynamical Systems  B, 2019, 24 (8) : 38813903. doi: 10.3934/dcdsb.2018335 
[5] 
Yuan Gao, Hangjie Ji, JianGuo Liu, Thomas P. Witelski. A vicinal surface model for epitaxial growth with logarithmic free energy. Discrete & Continuous Dynamical Systems  B, 2018, 23 (10) : 44334453. doi: 10.3934/dcdsb.2018170 
[6] 
Joseph Nebus. The Dirichlet quotient of point vortex interactions on the surface of the sphere examined by Monte Carlo experiments. Discrete & Continuous Dynamical Systems  B, 2005, 5 (1) : 125136. doi: 10.3934/dcdsb.2005.5.125 
[7] 
Chjan C. Lim, Joseph Nebus, Syed M. Assad. MonteCarlo and polyhedronbased simulations I: extremal states of the logarithmic Nbody problem on a sphere. Discrete & Continuous Dynamical Systems  B, 2003, 3 (3) : 313342. doi: 10.3934/dcdsb.2003.3.313 
[8] 
OlliPekka Tossavainen, Daniel B. Work. Markov Chain Monte Carlo based inverse modeling of traffic flows using GPS data. Networks & Heterogeneous Media, 2013, 8 (3) : 803824. doi: 10.3934/nhm.2013.8.803 
[9] 
Mazyar ZahediSeresht, GholamReza Jahanshahloo, Josef Jablonsky, Sedighe Asghariniya. A new Monte Carlo based procedure for complete ranking efficient units in DEA models. Numerical Algebra, Control & Optimization, 2017, 7 (4) : 403416. doi: 10.3934/naco.2017025 
[10] 
Reiner Henseler, Michael Herrmann, Barbara Niethammer, Juan J. L. Velázquez. A kinetic model for grain growth. Kinetic & Related Models, 2008, 1 (4) : 591617. doi: 10.3934/krm.2008.1.591 
[11] 
Xiaoming Zheng, Gou Young Koh, Trachette Jackson. A continuous model of angiogenesis: Initiation, extension, and maturation of new blood vessels modulated by vascular endothelial growth factor, angiopoietins, plateletderived growth factorB, and pericytes. Discrete & Continuous Dynamical Systems  B, 2013, 18 (4) : 11091154. doi: 10.3934/dcdsb.2013.18.1109 
[12] 
Jianhong (Jackie) Shen, Sung Ha Kang. Quantum TV and applications in image processing. Inverse Problems & Imaging, 2007, 1 (3) : 557575. doi: 10.3934/ipi.2007.1.557 
[13] 
Lekbir Afraites, Abdelghafour Atlas, Fahd Karami, Driss Meskine. Some class of parabolic systems applied to image processing. Discrete & Continuous Dynamical Systems  B, 2016, 21 (6) : 16711687. doi: 10.3934/dcdsb.2016017 
[14] 
Yan Jin, Jürgen Jost, Guofang Wang. A new nonlocal variational setting for image processing. Inverse Problems & Imaging, 2015, 9 (2) : 415430. doi: 10.3934/ipi.2015.9.415 
[15] 
Hong Jiang, Wei Deng, Zuowei Shen. Surveillance video processing using compressive sensing. Inverse Problems & Imaging, 2012, 6 (2) : 201214. doi: 10.3934/ipi.2012.6.201 
[16] 
Qi Wang, Tianyu Zhang. Kinetic theories for biofilms. Discrete & Continuous Dynamical Systems  B, 2012, 17 (3) : 10271059. doi: 10.3934/dcdsb.2012.17.1027 
[17] 
Anatoly N. Kochubei, Yuri Kondratiev. Fractional kinetic hierarchies and intermittency. Kinetic & Related Models, 2017, 10 (3) : 725740. doi: 10.3934/krm.2017029 
[18] 
Michael Herty, Giuseppe Visconti. Kinetic methods for inverse problems. Kinetic & Related Models, 2019, 12 (5) : 11091130. doi: 10.3934/krm.2019042 
[19] 
Krzysztof Frączek, Leonid Polterovich. Growth and mixing. Journal of Modern Dynamics, 2008, 2 (2) : 315338. doi: 10.3934/jmd.2008.2.315 
[20] 
Karim El Laithy, Martin Bogdan. Synaptic energy drives the information processing mechanisms in spiking neural networks. Mathematical Biosciences & Engineering, 2014, 11 (2) : 233256. doi: 10.3934/mbe.2014.11.233 
2018 Impact Factor: 1.008
Tools
Metrics
Other articles
by authors
[Back to Top]