September  2008, 10(2&3, September): 681-698. doi: 10.3934/dcdsb.2008.10.681

Stability islands in the vicinity of separatrices of near-integrable symplectic maps

1. 

Departament de Matemàtica Aplicada i Anàlisi, Universitat de Barcelona, Gran Via 585, 08007 Barcelona

2. 

Steklov Mathematical Institute, Gubkina str., Moscow, 119991

Received  December 2006 Revised  May 2007 Published  June 2008

We discuss the problem of existence of elliptic periodic trajectories inside lobes bounded by segments of stable and unstable separatrices of a hyperbolic fixed point. We show that such trajectories generically exist in symplectic maps arbitrary close to integrable ones. Elliptic periodic trajectories as a rule, generate stability islands. The area of such an island is of the same order as the lobe area, but the quotient of areas can be very small. Numerical examples are included.
Citation: Carles Simó, Dmitry Treschev. Stability islands in the vicinity of separatrices of near-integrable symplectic maps. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 681-698. doi: 10.3934/dcdsb.2008.10.681
[1]

Denis Gaidashev, Tomas Johnson. Spectral properties of renormalization for area-preserving maps. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3651-3675. doi: 10.3934/dcds.2016.36.3651

[2]

Simion Filip. Tropical dynamics of area-preserving maps. Journal of Modern Dynamics, 2019, 14: 179-226. doi: 10.3934/jmd.2019007

[3]

Hans Koch. On hyperbolicity in the renormalization of near-critical area-preserving maps. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 7029-7056. doi: 10.3934/dcds.2016106

[4]

Rafael de la Llave, Jason D. Mireles James. Parameterization of invariant manifolds by reducibility for volume preserving and symplectic maps. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4321-4360. doi: 10.3934/dcds.2012.32.4321

[5]

Daniel N. Dore, Andrew D. Hanlon. Area preserving maps on $\boldsymbol{S^2}$: A lower bound on the $\boldsymbol{C^0}$-norm using symplectic spectral invariants. Electronic Research Announcements, 2013, 20: 97-102. doi: 10.3934/era.2013.20.97

[6]

Anatoly Neishtadt, Carles Simó, Dmitry Treschev, Alexei Vasiliev. Periodic orbits and stability islands in chaotic seas created by separatrix crossings in slow-fast systems. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 621-650. doi: 10.3934/dcdsb.2008.10.621

[7]

H. E. Lomelí, J. D. Meiss. Generating forms for exact volume-preserving maps. Discrete & Continuous Dynamical Systems - S, 2009, 2 (2) : 361-377. doi: 10.3934/dcdss.2009.2.361

[8]

M. R. S. Kulenović, Orlando Merino. A global attractivity result for maps with invariant boxes. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 97-110. doi: 10.3934/dcdsb.2006.6.97

[9]

Arno Berger, Roland Zweimüller. Invariant measures for general induced maps and towers. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 3885-3901. doi: 10.3934/dcds.2013.33.3885

[10]

PaweŁ Hitczenko, Georgi S. Medvedev. Stability of equilibria of randomly perturbed maps. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 369-381. doi: 10.3934/dcdsb.2017017

[11]

Horst R. Thieme. Eigenvectors of homogeneous order-bounded order-preserving maps. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 1073-1097. doi: 10.3934/dcdsb.2017053

[12]

Michal Málek, Peter Raith. Stability of the distribution function for piecewise monotonic maps on the interval. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2527-2539. doi: 10.3934/dcds.2018105

[13]

I. Baldomá, Àlex Haro. One dimensional invariant manifolds of Gevrey type in real-analytic maps. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 295-322. doi: 10.3934/dcdsb.2008.10.295

[14]

Tifei Qian, Zhihong Xia. Heteroclinic orbits and chaotic invariant sets for monotone twist maps. Discrete & Continuous Dynamical Systems - A, 2003, 9 (1) : 69-95. doi: 10.3934/dcds.2003.9.69

[15]

Simon Lloyd, Edson Vargas. Critical covering maps without absolutely continuous invariant probability measure. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2393-2412. doi: 10.3934/dcds.2019101

[16]

Andrea Picco, Lamberto Rondoni. Boltzmann maps for networks of chemical reactions and the multi-stability problem. Networks & Heterogeneous Media, 2009, 4 (3) : 501-526. doi: 10.3934/nhm.2009.4.501

[17]

Sohrab Shahshahani. Stability of stationary wave maps from a curved background to a sphere. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3857-3909. doi: 10.3934/dcds.2016.36.3857

[18]

Mário Bessa, César M. Silva. Dense area-preserving homeomorphisms have zero Lyapunov exponents. Discrete & Continuous Dynamical Systems - A, 2012, 32 (4) : 1231-1244. doi: 10.3934/dcds.2012.32.1231

[19]

Miroslav KolÁŘ, Michal BeneŠ, Daniel ŠevČoviČ. Area preserving geodesic curvature driven flow of closed curves on a surface. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3671-3689. doi: 10.3934/dcdsb.2017148

[20]

Jingzhi Yan. Existence of torsion-low maximal isotopies for area preserving surface homeomorphisms. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4571-4602. doi: 10.3934/dcds.2018200

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]