# American Institute of Mathematical Sciences

September  2008, 10(2&3, September): 349-375. doi: 10.3934/dcdsb.2008.10.349

## Curvature perturbations and stability of a ring of vortices

 1 Departamento de Matemática Aplicada, Instituto de Matemática, Universidade Federal de Rio de Janeiro, Av. Athos de Silveira Ramos 149, Cidade Universitária, Caixa Postal 68530, Ilha do Fundão, CEP 21941-909, Rio de Janeiro, RJ, Brazil

Received  October 2006 Revised  September 2007 Published  June 2008

Vortex modeling has a long history. Descartes (1644) used it as a model for the solar system. J.J. Thomson (1883) used it as a model for the atom. We consider point-vortex systems, which can be regarded as “discrete” solutions of the Euler equation. Their dynamics is described by a Hamiltonian system of equations. In particular we are interested in vortex dynamics on simply connected surfaces of constant curvature $K$, i.e. a plane, spheres and hyperbolic surfaces. It is known that polygonal configurations of $N$ point-vortices are relative equilibria of the system. We study the stability of such polygonal configurations, and, more specifically, how stability depends upon the number of vortices $N$ and the curvature $K$ of the surface. To address such a question we have to formulate the problem in a unified geometrical way. The fact that the surfaces of interest can be viewed as Kähler manifolds greatly simplify our task. Nonlinear stability is then studied by making use of the Dirichlet Criterion. Stability ranges are the $K$-intervals for which the Hessian of the Hamiltonian is positive or negative definite, when evaluated at the equilibrium configuration.
Citation: Stefanella Boatto. Curvature perturbations and stability of a ring of vortices. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 349-375. doi: 10.3934/dcdsb.2008.10.349
 [1] P.K. Newton, M. Ruith, E. Upchurch. The constrained planar N-vortex problem: I. Integrability. Discrete & Continuous Dynamical Systems - B, 2005, 5 (1) : 137-152. doi: 10.3934/dcdsb.2005.5.137 [2] Björn Gebhard. Periodic solutions for the N-vortex problem via a superposition principle. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5443-5460. doi: 10.3934/dcds.2018240 [3] P.K. Newton. N-vortex equilibrium theory. Discrete & Continuous Dynamical Systems - A, 2007, 19 (2) : 411-418. doi: 10.3934/dcds.2007.19.411 [4] Lyudmila Grigoryeva, Juan-Pablo Ortega, Stanislav S. Zub. Stability of Hamiltonian relative equilibria in symmetric magnetically confined rigid bodies. Journal of Geometric Mechanics, 2014, 6 (3) : 373-415. doi: 10.3934/jgm.2014.6.373 [5] Marshall Hampton, Anders Nedergaard Jensen. Finiteness of relative equilibria in the planar generalized $N$-body problem with fixed subconfigurations. Journal of Geometric Mechanics, 2015, 7 (1) : 35-42. doi: 10.3934/jgm.2015.7.35 [6] Carlos García-Azpeitia. Relative periodic solutions of the $n$-vortex problem on the sphere. Journal of Geometric Mechanics, 2019, 11 (3) : 427-438. doi: 10.3934/jgm.2019021 [7] Frederic Laurent-Polz, James Montaldi, Mark Roberts. Point vortices on the sphere: Stability of symmetric relative equilibria. Journal of Geometric Mechanics, 2011, 3 (4) : 439-486. doi: 10.3934/jgm.2011.3.439 [8] James Montaldi. Bifurcations of relative equilibria near zero momentum in Hamiltonian systems with spherical symmetry. Journal of Geometric Mechanics, 2014, 6 (2) : 237-260. doi: 10.3934/jgm.2014.6.237 [9] Răzvan M. Tudoran, Anania Gîrban. On the Hamiltonian dynamics and geometry of the Rabinovich system. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 789-823. doi: 10.3934/dcdsb.2011.15.789 [10] Janusz Grabowski, Katarzyna Grabowska, Paweł Urbański. Geometry of Lagrangian and Hamiltonian formalisms in the dynamics of strings. Journal of Geometric Mechanics, 2014, 6 (4) : 503-526. doi: 10.3934/jgm.2014.6.503 [11] Oǧul Esen, Hasan Gümral. Geometry of plasma dynamics II: Lie algebra of Hamiltonian vector fields. Journal of Geometric Mechanics, 2012, 4 (3) : 239-269. doi: 10.3934/jgm.2012.4.239 [12] Xavier Perrot, Xavier Carton. Point-vortex interaction in an oscillatory deformation field: Hamiltonian dynamics, harmonic resonance and transition to chaos. Discrete & Continuous Dynamical Systems - B, 2009, 11 (4) : 971-995. doi: 10.3934/dcdsb.2009.11.971 [13] Antonio Giorgilli. Unstable equilibria of Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 855-871. doi: 10.3934/dcds.2001.7.855 [14] William H. Sandholm. Local stability of strict equilibria under evolutionary game dynamics. Journal of Dynamics & Games, 2014, 1 (3) : 485-495. doi: 10.3934/jdg.2014.1.485 [15] Luis Vega. The dynamics of vortex filaments with corners. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1581-1601. doi: 10.3934/cpaa.2015.14.1581 [16] Simon Scott. Relative zeta determinants and the geometry of the determinant line bundle. Electronic Research Announcements, 2001, 7: 8-16. [17] Nicola Soave, Susanna Terracini. Symbolic dynamics for the $N$-centre problem at negative energies. Discrete & Continuous Dynamical Systems - A, 2012, 32 (9) : 3245-3301. doi: 10.3934/dcds.2012.32.3245 [18] Pedro Caro, Mikko Salo. Stability of the Calderón problem in admissible geometries. Inverse Problems & Imaging, 2014, 8 (4) : 939-957. doi: 10.3934/ipi.2014.8.939 [19] Armengol Gasull, Héctor Giacomini, Maite Grau. On the stability of periodic orbits for differential systems in $\mathbb{R}^n$. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 495-509. doi: 10.3934/dcdsb.2008.10.495 [20] Yannick Viossat. Game dynamics and Nash equilibria. Journal of Dynamics & Games, 2014, 1 (3) : 537-553. doi: 10.3934/jdg.2014.1.537

2018 Impact Factor: 1.008