July  2008, 10(1): 1-18. doi: 10.3934/dcdsb.2008.10.1

Estimates of the wake for the 3D Oseen equations

1. 

Ajou University, Suwon 443-749, South Korea

2. 

Mokpo National University, Mokpo, South Korea

Received  April 2007 Revised  November 2007 Published  April 2008

Since there is a wake for the Oseen flow, the convergence rates inside and outside the wake region might be different. The existence of the wake for the steady Oseen flow is given in Galdi [17]. We estimate these rates for the non-steady case. In order to do that, we estimate the $L^p$ spatial-temporal decay rates of solutions of incompressible Oseen flow in an exterior domain. For the spatial-temporal decays, we consider weights of the form $|x|$ and $|x-\mathbf u_\infty t|$, where $x$ is the spatial variable and $\mathbf u_\infty$ is the constant velocity at infinity. From our estimates, we conclude the convergence inside the wake region might be slower than outside the wake region.
Citation: Hyeong-Ohk Bae, Bum Ja Jin. Estimates of the wake for the 3D Oseen equations. Discrete & Continuous Dynamical Systems - B, 2008, 10 (1) : 1-18. doi: 10.3934/dcdsb.2008.10.1
[1]

Aniello Raffaele Patrone, Otmar Scherzer. On a spatial-temporal decomposition of optical flow. Inverse Problems & Imaging, 2017, 11 (4) : 761-781. doi: 10.3934/ipi.2017036

[2]

Šárka Nečasová. Stokes and Oseen flow with Coriolis force in the exterior domain. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 339-351. doi: 10.3934/dcdss.2008.1.339

[3]

Raimund Bürger, Gerardo Chowell, Pep Mulet, Luis M. Villada. Modelling the spatial-temporal progression of the 2009 A/H1N1 influenza pandemic in Chile. Mathematical Biosciences & Engineering, 2016, 13 (1) : 43-65. doi: 10.3934/mbe.2016.13.43

[4]

Daniil Kazantsev, William M. Thompson, William R. B. Lionheart, Geert Van Eyndhoven, Anders P. Kaestner, Katherine J. Dobson, Philip J. Withers, Peter D. Lee. 4D-CT reconstruction with unified spatial-temporal patch-based regularization. Inverse Problems & Imaging, 2015, 9 (2) : 447-467. doi: 10.3934/ipi.2015.9.447

[5]

Yoon-Sik Cho, Aram Galstyan, P. Jeffrey Brantingham, George Tita. Latent self-exciting point process model for spatial-temporal networks. Discrete & Continuous Dynamical Systems - B, 2014, 19 (5) : 1335-1354. doi: 10.3934/dcdsb.2014.19.1335

[6]

Takeshi Taniguchi. The existence and decay estimates of the solutions to $3$D stochastic Navier-Stokes equations with additive noise in an exterior domain. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4323-4341. doi: 10.3934/dcds.2014.34.4323

[7]

Moez Daoulatli. Energy decay rates for solutions of the wave equation with linear damping in exterior domain. Evolution Equations & Control Theory, 2016, 5 (1) : 37-59. doi: 10.3934/eect.2016.5.37

[8]

Paul Deuring. Pointwise spatial decay of time-dependent Oseen flows: The case of data with noncompact support. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2757-2776. doi: 10.3934/dcds.2013.33.2757

[9]

Ming He, Jianwen Zhang. Global cylindrical solution to the compressible MHD equations in an exterior domain. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1841-1865. doi: 10.3934/cpaa.2009.8.1841

[10]

Trinh Viet Duoc. Navier-Stokes-Oseen flows in the exterior of a rotating and translating obstacle. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3387-3405. doi: 10.3934/dcds.2018145

[11]

Umberto Mosco. Impulsive motion on synchronized spatial temporal grids. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6069-6098. doi: 10.3934/dcds.2017261

[12]

Yoshihiro Shibata. On the local wellposedness of free boundary problem for the Navier-Stokes equations in an exterior domain. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1681-1721. doi: 10.3934/cpaa.2018081

[13]

Tariel Sanikidze, A.F. Tedeev. On the temporal decay estimates for the degenerate parabolic system. Communications on Pure & Applied Analysis, 2013, 12 (4) : 1755-1768. doi: 10.3934/cpaa.2013.12.1755

[14]

Eunkyoung Ko, Eun Kyoung Lee, R. Shivaji. Multiplicity results for classes of singular problems on an exterior domain. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5153-5166. doi: 10.3934/dcds.2013.33.5153

[15]

Vladimir Georgiev, Koichi Taniguchi. On fractional Leibniz rule for Dirichlet Laplacian in exterior domain. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 1101-1115. doi: 10.3934/dcds.2019046

[16]

Andrey Shishkov. Large solutions of parabolic logistic equation with spatial and temporal degeneracies. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 895-907. doi: 10.3934/dcdss.2017045

[17]

Julie Lee, J. C. Song. Spatial decay bounds in a linearized magnetohydrodynamic channel flow. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1349-1361. doi: 10.3934/cpaa.2013.12.1349

[18]

Kazuhiro Ishige, Michinori Ishiwata. Global solutions for a semilinear heat equation in the exterior domain of a compact set. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 847-865. doi: 10.3934/dcds.2012.32.847

[19]

Chérif Amrouche, María Ángeles Rodríguez-Bellido. On the very weak solution for the Oseen and Navier-Stokes equations. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 159-183. doi: 10.3934/dcdss.2010.3.159

[20]

Liselott Flodén, Jens Persson. Homogenization of nonlinear dissipative hyperbolic problems exhibiting arbitrarily many spatial and temporal scales. Networks & Heterogeneous Media, 2016, 11 (4) : 627-653. doi: 10.3934/nhm.2016012

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]