
Previous Article
A model of HIV1 infection with HAART therapy and intracellular delays
 DCDSB Home
 This Issue
 Next Article
Immune system memory realization in a population model
1.  Department of Mathematics and Statistics, York University, Toronto, Ontario M3J 1P3 
2.  LAboratory of Mathematical Parallel systems (LAMPS), Laboratory for Industrial and Applied Mathematics (LIAM), Department of Mathematics and Statistics, York University, Toronto M3J 1P3, Canada 
3.  Department of Mathematics and Statistics, Laboratory of Mathematical Parallel systems (LAMPS) and CDM, York University, Toronto M3J 1P3, Canada 
[1] 
Dan Liu, Shigui Ruan, Deming Zhu. Stable periodic oscillations in a twostage cancer model of tumor and immune system interactions. Mathematical Biosciences & Engineering, 2012, 9 (2) : 347368. doi: 10.3934/mbe.2012.9.347 
[2] 
Youssef Amal, Martin Campos Pinto. Global solutions for an agedependent model of nucleation, growth and ageing with hysteresis. Discrete & Continuous Dynamical Systems  B, 2010, 13 (3) : 517535. doi: 10.3934/dcdsb.2010.13.517 
[3] 
Antoni Leon Dawidowicz, Anna Poskrobko. Stability problem for the agedependent predatorprey model. Evolution Equations & Control Theory, 2018, 7 (1) : 7993. doi: 10.3934/eect.2018005 
[4] 
Xinyu Song, Liming Cai, U. Neumann. Ratiodependent predatorprey system with stage structure for prey. Discrete & Continuous Dynamical Systems  B, 2004, 4 (3) : 747758. doi: 10.3934/dcdsb.2004.4.747 
[5] 
Ruijun Zhao, Jemal MohammedAwel. A mathematical model studying mosquitostage transmissionblocking vaccines. Mathematical Biosciences & Engineering, 2014, 11 (5) : 12291245. doi: 10.3934/mbe.2014.11.1229 
[6] 
Yunfei Lv, Rong Yuan, Yuan He. Wavefronts of a stage structured model with statedependent delay. Discrete & Continuous Dynamical Systems  A, 2015, 35 (10) : 49314954. doi: 10.3934/dcds.2015.35.4931 
[7] 
Bedr'Eddine Ainseba. Agedependent population dynamics diffusive systems. Discrete & Continuous Dynamical Systems  B, 2004, 4 (4) : 12331247. doi: 10.3934/dcdsb.2004.4.1233 
[8] 
Shanjing Ren. Global stability in a tuberculosis model of imperfect treatment with agedependent latency and relapse. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 13371360. doi: 10.3934/mbe.2017069 
[9] 
Nika Lazaryan, Hassan Sedaghat. Extinction and the Allee effect in an age structured Ricker population model with interstage interaction. Discrete & Continuous Dynamical Systems  B, 2018, 23 (2) : 731747. doi: 10.3934/dcdsb.2018040 
[10] 
Gabriella Di Blasio. An ultraparabolic problem arising from agedependent population diffusion. Discrete & Continuous Dynamical Systems  A, 2009, 25 (3) : 843858. doi: 10.3934/dcds.2009.25.843 
[11] 
Christoph Walker. Agedependent equations with nonlinear diffusion. Discrete & Continuous Dynamical Systems  A, 2010, 26 (2) : 691712. doi: 10.3934/dcds.2010.26.691 
[12] 
Shangzhi Li, Shangjiang Guo. Dynamics of a twospecies stagestructured model incorporating statedependent maturation delays. Discrete & Continuous Dynamical Systems  B, 2017, 22 (4) : 13931423. doi: 10.3934/dcdsb.2017067 
[13] 
Jaume Llibre, Claudio Vidal. Hopf periodic orbits for a ratiodependent predatorprey model with stage structure. Discrete & Continuous Dynamical Systems  B, 2016, 21 (6) : 18591867. doi: 10.3934/dcdsb.2016026 
[14] 
Tianyuan Xu, Shanming Ji, Chunhua Jin, Ming Mei, Jingxue Yin. Early and late stage profiles for a chemotaxis model with densitydependent jump probability. Mathematical Biosciences & Engineering, 2018, 15 (6) : 13451385. doi: 10.3934/mbe.2018062 
[15] 
JingAn Cui, Xinyu Song. Permanence of predatorprey system with stage structure. Discrete & Continuous Dynamical Systems  B, 2004, 4 (3) : 547554. doi: 10.3934/dcdsb.2004.4.547 
[16] 
Jia Li. Malaria model with stagestructured mosquitoes. Mathematical Biosciences & Engineering, 2011, 8 (3) : 753768. doi: 10.3934/mbe.2011.8.753 
[17] 
G. Buffoni, S. Pasquali, G. Gilioli. A stochastic model for the dynamics of a stage structured population. Discrete & Continuous Dynamical Systems  B, 2004, 4 (3) : 517525. doi: 10.3934/dcdsb.2004.4.517 
[18] 
FengBin Wang. A periodic reactiondiffusion model with a quiescent stage. Discrete & Continuous Dynamical Systems  B, 2012, 17 (1) : 283295. doi: 10.3934/dcdsb.2012.17.283 
[19] 
Jinping Fang, Guang Lin, Hui Wan. Analysis of a stagestructured dengue model. Discrete & Continuous Dynamical Systems  B, 2018, 23 (9) : 40454061. doi: 10.3934/dcdsb.2018125 
[20] 
Andrey V. Melnik, Andrei Korobeinikov. Lyapunov functions and global stability for SIR and SEIR models with agedependent susceptibility. Mathematical Biosciences & Engineering, 2013, 10 (2) : 369378. doi: 10.3934/mbe.2013.10.369 
2018 Impact Factor: 1.008
Tools
Metrics
Other articles
by authors
[Back to Top]