# American Institute of Mathematical Sciences

March  2007, 7(2): 365-375. doi: 10.3934/dcdsb.2007.7.365

## Uniqueness and stability of positive periodic numerical solution of an epidemic model

 1 Department of Mathematics, Inha University, Incheon 402-751, South Korea

Received  January 2006 Revised  October 2006 Published  December 2006

An age structured $s$-$i$-$s$ epidemic model with random diffusion is studied. The model is described by the system of nonlinear and nonlocal integro-differential equations. Finite differences along the characteristics in age-time domain combined with Galerkin finite elements in spatial domain are used in the approximation. It is shown that a positive periodic solution to the discrete system resulting from the approximation can be generated, if the initial condition is fertile. It is proved that the endemic periodic solution is globally stable once it exists.
Citation: Mi-Young Kim. Uniqueness and stability of positive periodic numerical solution of an epidemic model. Discrete & Continuous Dynamical Systems - B, 2007, 7 (2) : 365-375. doi: 10.3934/dcdsb.2007.7.365
 [1] Runchang Lin, Huiqing Zhu. A discontinuous Galerkin least-squares finite element method for solving Fisher's equation. Conference Publications, 2013, 2013 (special) : 489-497. doi: 10.3934/proc.2013.2013.489 [2] Sertan Alkan. A new solution method for nonlinear fractional integro-differential equations. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1065-1077. doi: 10.3934/dcdss.2015.8.1065 [3] Wafa Hamrouni, Ali Abdennadher. Random walk's models for fractional diffusion equation. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2509-2530. doi: 10.3934/dcdsb.2016058 [4] Lars Grüne, Peter E. Kloeden, Stefan Siegmund, Fabian R. Wirth. Lyapunov's second method for nonautonomous differential equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 375-403. doi: 10.3934/dcds.2007.18.375 [5] Darya V. Verveyko, Andrey Yu. Verisokin. Application of He's method to the modified Rayleigh equation. Conference Publications, 2011, 2011 (Special) : 1423-1431. doi: 10.3934/proc.2011.2011.1423 [6] Armando Majorana. A numerical model of the Boltzmann equation related to the discontinuous Galerkin method. Kinetic & Related Models, 2011, 4 (1) : 139-151. doi: 10.3934/krm.2011.4.139 [7] David Blázquez-Sanz, Juan J. Morales-Ruiz. Lie's reduction method and differential Galois theory in the complex analytic context. Discrete & Continuous Dynamical Systems - A, 2012, 32 (2) : 353-379. doi: 10.3934/dcds.2012.32.353 [8] Liu Liu. Uniform spectral convergence of the stochastic Galerkin method for the linear semiconductor Boltzmann equation with random inputs and diffusive scaling. Kinetic & Related Models, 2018, 11 (5) : 1139-1156. doi: 10.3934/krm.2018044 [9] Mikhail B. Sevryuk. Invariant tori in quasi-periodic non-autonomous dynamical systems via Herman's method. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 569-595. doi: 10.3934/dcds.2007.18.569 [10] Christopher M. Kellett. Classical converse theorems in Lyapunov's second method. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2333-2360. doi: 10.3934/dcdsb.2015.20.2333 [11] Matthias Eller. A remark on Littman's method of boundary controllability. Evolution Equations & Control Theory, 2013, 2 (4) : 621-630. doi: 10.3934/eect.2013.2.621 [12] Christopher Bose, Rua Murray. The exact rate of approximation in Ulam's method. Discrete & Continuous Dynamical Systems - A, 2001, 7 (1) : 219-235. doi: 10.3934/dcds.2001.7.219 [13] Bernd Hofmann, Barbara Kaltenbacher, Elena Resmerita. Lavrentiev's regularization method in Hilbert spaces revisited. Inverse Problems & Imaging, 2016, 10 (3) : 741-764. doi: 10.3934/ipi.2016019 [14] Zhengyong Zhou, Bo Yu. A smoothing homotopy method based on Robinson's normal equation for mixed complementarity problems. Journal of Industrial & Management Optimization, 2011, 7 (4) : 977-989. doi: 10.3934/jimo.2011.7.977 [15] Egil Bae, Xue-Cheng Tai, Wei Zhu. Augmented Lagrangian method for an Euler's elastica based segmentation model that promotes convex contours. Inverse Problems & Imaging, 2017, 11 (1) : 1-23. doi: 10.3934/ipi.2017001 [16] Út V. Lê. Contraction-Galerkin method for a semi-linear wave equation. Communications on Pure & Applied Analysis, 2010, 9 (1) : 141-160. doi: 10.3934/cpaa.2010.9.141 [17] Torsten Keßler, Sergej Rjasanow. Fully conservative spectral Galerkin–Petrov method for the inhomogeneous Boltzmann equation. Kinetic & Related Models, 2019, 12 (3) : 507-549. doi: 10.3934/krm.2019021 [18] Wei-Ming Ni, Yaping Wu, Qian Xu. The existence and stability of nontrivial steady states for S-K-T competition model with cross diffusion. Discrete & Continuous Dynamical Systems - A, 2014, 34 (12) : 5271-5298. doi: 10.3934/dcds.2014.34.5271 [19] Bassam Kojok. Global existence for a forced dispersive dissipative equation via the I-method. Communications on Pure & Applied Analysis, 2009, 8 (4) : 1401-1419. doi: 10.3934/cpaa.2009.8.1401 [20] Jianquan Li, Xiaoqin Wang, Xiaolin Lin. Impact of behavioral change on the epidemic characteristics of an epidemic model without vital dynamics. Mathematical Biosciences & Engineering, 2018, 15 (6) : 1425-1434. doi: 10.3934/mbe.2018065

2018 Impact Factor: 1.008