
Previous Article
Examples of moderate deviation principle for diffusion processes
 DCDSB Home
 This Issue

Next Article
Convergence of a semidiscrete scheme for the stochastic Kortewegde Vries equation
Time reversal of parabolic waves and twofrequency Wigner distribution
1.  Department of Mathematics, University of California at Davis, Davis, CA 95616, United States 
2.  Department of Mathematics, University of California at Irvine, Irvine, CA 92697, United States 
[1] 
ChangYeol Jung, Alex Mahalov. Wave propagation in random waveguides. Discrete & Continuous Dynamical Systems  A, 2010, 28 (1) : 147159. doi: 10.3934/dcds.2010.28.147 
[2] 
Guillaume Bal. Homogenization in random media and effective medium theory for high frequency waves. Discrete & Continuous Dynamical Systems  B, 2007, 8 (2) : 473492. doi: 10.3934/dcdsb.2007.8.473 
[3] 
TzongYow Lee and Fred Torcaso. Wave propagation in a lattice KPP equation in random media. Electronic Research Announcements, 1997, 3: 121125. 
[4] 
JeanDaniel Djida, Juan J. Nieto, Iván Area. Nonlocal timeporous medium equation: Weak solutions and finite speed of propagation. Discrete & Continuous Dynamical Systems  B, 2019, 24 (8) : 40314053. doi: 10.3934/dcdsb.2019049 
[5] 
Charles L. Epstein, Leslie Greengard, Thomas Hagstrom. On the stability of timedomain integral equations for acoustic wave propagation. Discrete & Continuous Dynamical Systems  A, 2016, 36 (8) : 43674382. doi: 10.3934/dcds.2016.36.4367 
[6] 
Kenrick Bingham, Yaroslav Kurylev, Matti Lassas, Samuli Siltanen. Iterative timereversal control for inverse problems. Inverse Problems & Imaging, 2008, 2 (1) : 6381. doi: 10.3934/ipi.2008.2.63 
[7] 
Rodrigo I. Brevis, Jaime H. Ortega, David Pardo. A source time reversal method for seismicity induced by mining. Inverse Problems & Imaging, 2017, 11 (1) : 2545. doi: 10.3934/ipi.2017002 
[8] 
Mohar Guha, Keith Promislow. Front propagation in a noisy, nonsmooth, excitable medium. Discrete & Continuous Dynamical Systems  A, 2009, 23 (3) : 617638. doi: 10.3934/dcds.2009.23.617 
[9] 
Guillaume Bal, Tomasz Komorowski, Lenya Ryzhik. Kinetic limits for waves in a random medium. Kinetic & Related Models, 2010, 3 (4) : 529644. doi: 10.3934/krm.2010.3.529 
[10] 
Kazufumi Ito, Karim Ramdani, Marius Tucsnak. A time reversal based algorithm for solving initial data inverse problems. Discrete & Continuous Dynamical Systems  S, 2011, 4 (3) : 641652. doi: 10.3934/dcdss.2011.4.641 
[11] 
James Nolen. A central limit theorem for pulled fronts in a random medium. Networks & Heterogeneous Media, 2011, 6 (2) : 167194. doi: 10.3934/nhm.2011.6.167 
[12] 
D. G. Aronson, N. V. Mantzaris, Hans Othmer. Wave propagation and blocking in inhomogeneous media. Discrete & Continuous Dynamical Systems  A, 2005, 13 (4) : 843876. doi: 10.3934/dcds.2005.13.843 
[13] 
Shangbing Ai, Wenzhang Huang, ZhiAn Wang. Reaction, diffusion and chemotaxis in wave propagation. Discrete & Continuous Dynamical Systems  B, 2015, 20 (1) : 121. doi: 10.3934/dcdsb.2015.20.1 
[14] 
Elena Cordero, Fabio Nicola, Luigi Rodino. Timefrequency analysis of fourier integral operators. Communications on Pure & Applied Analysis, 2010, 9 (1) : 121. doi: 10.3934/cpaa.2010.9.1 
[15] 
Yaiza Canzani, Boris Hanin. Fixed frequency eigenfunction immersions and supremum norms of random waves. Electronic Research Announcements, 2015, 22: 7686. doi: 10.3934/era.2015.22.76 
[16] 
Corinna Burkard, Aurelia Minut, Karim Ramdani. Far field model for time reversal and application to selective focusing on small dielectric inhomogeneities. Inverse Problems & Imaging, 2013, 7 (2) : 445470. doi: 10.3934/ipi.2013.7.445 
[17] 
Patrick W. Dondl, Michael Scheutzow. Positive speed of propagation in a semilinear parabolic interface model with unbounded random coefficients. Networks & Heterogeneous Media, 2012, 7 (1) : 137150. doi: 10.3934/nhm.2012.7.137 
[18] 
Christophe Cheverry, Thierry Paul. On some geometry of propagation in diffractive time scales. Discrete & Continuous Dynamical Systems  A, 2012, 32 (2) : 499538. doi: 10.3934/dcds.2012.32.499 
[19] 
Jonathan E. Rubin. A nonlocal eigenvalue problem for the stability of a traveling wave in a neuronal medium. Discrete & Continuous Dynamical Systems  A, 2004, 10 (4) : 925940. doi: 10.3934/dcds.2004.10.925 
[20] 
Stéphane Heuraux, Filipe da Silva. Simulations on wave propagation in fluctuating fusion plasmas for Reflectometry applications and new developments. Discrete & Continuous Dynamical Systems  S, 2012, 5 (2) : 307328. doi: 10.3934/dcdss.2012.5.307 
2018 Impact Factor: 1.008
Tools
Metrics
Other articles
by authors
[Back to Top]