July  2006, 6(4): 783-802. doi: 10.3934/dcdsb.2006.6.783

Time reversal of parabolic waves and two-frequency Wigner distribution

1. 

Department of Mathematics, University of California at Davis, Davis, CA 95616, United States

2. 

Department of Mathematics, University of California at Irvine, Irvine, CA 92697, United States

Received  February 2005 Revised  November 2005 Published  April 2006

We consider propagation and time reversal of wave pulses in a random environment. The focus of our analysis is the development of an expression for the two frequency mutual coherence function for the harmonic wave field. This quantity plays a crucial role in the analysis of many wave propagation phenomena and we illustrate by explicitly considering time reversal in the context of time pulses with a high carrier frequency. In a time-reversal experiment the wave received by an active transducer or antenna (receiver-emitter) array, is recorded in a finite time window and then re-emitted into the medium time reversed, that is, the tails of the recorded signals are sent first. The re-emitted wave pulse will focus approximately on the original source location. We use explicit expressions for the mutual coherence functions and their asymptotic approximations in the regime of long or short propagation distance and a high carrier frequency to analyze the refocusing of the wave pulse in the time reversal experiment. A novel aspect of our analysis is that we are able to characterize precisely the decoherence length in temporal frequency. This allows us to analyze for instance the time reversal experiment when the mirror has a finite aperture in time.
Citation: Albert Fannjiang, Knut Solna. Time reversal of parabolic waves and two-frequency Wigner distribution. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 783-802. doi: 10.3934/dcdsb.2006.6.783
[1]

Chang-Yeol Jung, Alex Mahalov. Wave propagation in random waveguides. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 147-159. doi: 10.3934/dcds.2010.28.147

[2]

Guillaume Bal. Homogenization in random media and effective medium theory for high frequency waves. Discrete & Continuous Dynamical Systems - B, 2007, 8 (2) : 473-492. doi: 10.3934/dcdsb.2007.8.473

[3]

Tzong-Yow Lee and Fred Torcaso. Wave propagation in a lattice KPP equation in random media. Electronic Research Announcements, 1997, 3: 121-125.

[4]

Jean-Daniel Djida, Juan J. Nieto, Iván Area. Nonlocal time-porous medium equation: Weak solutions and finite speed of propagation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4031-4053. doi: 10.3934/dcdsb.2019049

[5]

Charles L. Epstein, Leslie Greengard, Thomas Hagstrom. On the stability of time-domain integral equations for acoustic wave propagation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4367-4382. doi: 10.3934/dcds.2016.36.4367

[6]

Kenrick Bingham, Yaroslav Kurylev, Matti Lassas, Samuli Siltanen. Iterative time-reversal control for inverse problems. Inverse Problems & Imaging, 2008, 2 (1) : 63-81. doi: 10.3934/ipi.2008.2.63

[7]

Rodrigo I. Brevis, Jaime H. Ortega, David Pardo. A source time reversal method for seismicity induced by mining. Inverse Problems & Imaging, 2017, 11 (1) : 25-45. doi: 10.3934/ipi.2017002

[8]

Mohar Guha, Keith Promislow. Front propagation in a noisy, nonsmooth, excitable medium. Discrete & Continuous Dynamical Systems - A, 2009, 23 (3) : 617-638. doi: 10.3934/dcds.2009.23.617

[9]

Guillaume Bal, Tomasz Komorowski, Lenya Ryzhik. Kinetic limits for waves in a random medium. Kinetic & Related Models, 2010, 3 (4) : 529-644. doi: 10.3934/krm.2010.3.529

[10]

Kazufumi Ito, Karim Ramdani, Marius Tucsnak. A time reversal based algorithm for solving initial data inverse problems. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 641-652. doi: 10.3934/dcdss.2011.4.641

[11]

James Nolen. A central limit theorem for pulled fronts in a random medium. Networks & Heterogeneous Media, 2011, 6 (2) : 167-194. doi: 10.3934/nhm.2011.6.167

[12]

D. G. Aronson, N. V. Mantzaris, Hans Othmer. Wave propagation and blocking in inhomogeneous media. Discrete & Continuous Dynamical Systems - A, 2005, 13 (4) : 843-876. doi: 10.3934/dcds.2005.13.843

[13]

Shangbing Ai, Wenzhang Huang, Zhi-An Wang. Reaction, diffusion and chemotaxis in wave propagation. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 1-21. doi: 10.3934/dcdsb.2015.20.1

[14]

Elena Cordero, Fabio Nicola, Luigi Rodino. Time-frequency analysis of fourier integral operators. Communications on Pure & Applied Analysis, 2010, 9 (1) : 1-21. doi: 10.3934/cpaa.2010.9.1

[15]

Yaiza Canzani, Boris Hanin. Fixed frequency eigenfunction immersions and supremum norms of random waves. Electronic Research Announcements, 2015, 22: 76-86. doi: 10.3934/era.2015.22.76

[16]

Corinna Burkard, Aurelia Minut, Karim Ramdani. Far field model for time reversal and application to selective focusing on small dielectric inhomogeneities. Inverse Problems & Imaging, 2013, 7 (2) : 445-470. doi: 10.3934/ipi.2013.7.445

[17]

Patrick W. Dondl, Michael Scheutzow. Positive speed of propagation in a semilinear parabolic interface model with unbounded random coefficients. Networks & Heterogeneous Media, 2012, 7 (1) : 137-150. doi: 10.3934/nhm.2012.7.137

[18]

Christophe Cheverry, Thierry Paul. On some geometry of propagation in diffractive time scales. Discrete & Continuous Dynamical Systems - A, 2012, 32 (2) : 499-538. doi: 10.3934/dcds.2012.32.499

[19]

Jonathan E. Rubin. A nonlocal eigenvalue problem for the stability of a traveling wave in a neuronal medium. Discrete & Continuous Dynamical Systems - A, 2004, 10 (4) : 925-940. doi: 10.3934/dcds.2004.10.925

[20]

Stéphane Heuraux, Filipe da Silva. Simulations on wave propagation in fluctuating fusion plasmas for Reflectometry applications and new developments. Discrete & Continuous Dynamical Systems - S, 2012, 5 (2) : 307-328. doi: 10.3934/dcdss.2012.5.307

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]