• Previous Article
    Anchoring distortions coupled with plane Couette & Poiseuille flows of nematic polymers in viscous solvents: Morphology in molecular orientation, stress & flow
  • DCDS-B Home
  • This Issue
  • Next Article
    Simulations of 3-D domain wall structures in thin films
March  2006, 6(2): 391-406. doi: 10.3934/dcdsb.2006.6.391

A variational construction of anisotropic mobility in phase-field simulation

1. 

Department of Mathematics, Pennsylvania Sate University, State College, PA 16802, United States

2. 

Department of Mathematics, Pennsylvania State University, University Park, PA 16802, United States

Received  January 2005 Revised  September 2005 Published  December 2005

In the phase-field modeling of the mezoscopic morphology and microstructure evolution in many material processes, an anisotropic mobility is often needed that depends on the interfacial normal direction. It is a challenge to define the anisotropic mobility function on the whole simulation domain while the interfacial normal can only be meaningfully determined on the interface. We propose a variational approach for the construction of a smoothened mobility function that mimics the prescribed anisotropic mobility on the interface and extends smoothly to the whole simulation domain. Some theoretical analysis of the proposed method are made to ensure its validity and to provide hints on the effects and the choices of various parameters. An iterative scheme for the numerical solution of the variational problem is also described. Several numerical tests are presented to illustrate the effect of a smoother anisotropic mobility on the interfacial dynamics, and the advantage over using a cutoff mobility.
Citation: Peng Yu, Qiang Du. A variational construction of anisotropic mobility in phase-field simulation. Discrete & Continuous Dynamical Systems - B, 2006, 6 (2) : 391-406. doi: 10.3934/dcdsb.2006.6.391
[1]

Maciek D. Korzec, Hao Wu. Analysis and simulation for an isotropic phase-field model describing grain growth. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2227-2246. doi: 10.3934/dcdsb.2014.19.2227

[2]

Pierluigi Colli, Danielle Hilhorst, Françoise Issard-Roch, Giulio Schimperna. Long time convergence for a class of variational phase-field models. Discrete & Continuous Dynamical Systems - A, 2009, 25 (1) : 63-81. doi: 10.3934/dcds.2009.25.63

[3]

Tina Hartley, Thomas Wanner. A semi-implicit spectral method for stochastic nonlocal phase-field models. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 399-429. doi: 10.3934/dcds.2009.25.399

[4]

Alain Miranville, Costică Moroşanu. Analysis of an iterative scheme of fractional steps type associated to the nonlinear phase-field equation with non-homogeneous dynamic boundary conditions. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 537-556. doi: 10.3934/dcdss.2016011

[5]

Maurizio Grasselli, Giulio Schimperna. Nonlocal phase-field systems with general potentials. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5089-5106. doi: 10.3934/dcds.2013.33.5089

[6]

Federico Mario Vegni. Dissipativity of a conserved phase-field system with memory. Discrete & Continuous Dynamical Systems - A, 2003, 9 (4) : 949-968. doi: 10.3934/dcds.2003.9.949

[7]

José Luiz Boldrini, Gabriela Planas. A tridimensional phase-field model with convection for phase change of an alloy. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 429-450. doi: 10.3934/dcds.2005.13.429

[8]

G. Caginalp, Emre Esenturk. Anisotropic phase field equations of arbitrary order. Discrete & Continuous Dynamical Systems - S, 2011, 4 (2) : 311-350. doi: 10.3934/dcdss.2011.4.311

[9]

Maurizio Grasselli, Hao Wu. Robust exponential attractors for the modified phase-field crystal equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2539-2564. doi: 10.3934/dcds.2015.35.2539

[10]

Claudio Giorgi. Phase-field models for transition phenomena in materials with hysteresis. Discrete & Continuous Dynamical Systems - S, 2015, 8 (4) : 693-722. doi: 10.3934/dcdss.2015.8.693

[11]

Zhenhua Zhang. Asymptotic behavior of solutions to the phase-field equations with neumann boundary conditions. Communications on Pure & Applied Analysis, 2005, 4 (3) : 683-693. doi: 10.3934/cpaa.2005.4.683

[12]

Sergiu Aizicovici, Hana Petzeltová. Convergence to equilibria of solutions to a conserved Phase-Field system with memory. Discrete & Continuous Dynamical Systems - S, 2009, 2 (1) : 1-16. doi: 10.3934/dcdss.2009.2.1

[13]

S. Gatti, M. Grasselli, V. Pata, M. Squassina. Robust exponential attractors for a family of nonconserved phase-field systems with memory. Discrete & Continuous Dynamical Systems - A, 2005, 12 (5) : 1019-1029. doi: 10.3934/dcds.2005.12.1019

[14]

P.K. Galenko, E.V. Abramova, D.M. Herlach. Phase-field study of solute trapping effect in rapid solidification. Conference Publications, 2011, 2011 (Special) : 457-466. doi: 10.3934/proc.2011.2011.457

[15]

Ahmed Bonfoh, Cyril D. Enyi. Large time behavior of a conserved phase-field system. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1077-1105. doi: 10.3934/cpaa.2016.15.1077

[16]

M. Grasselli, Hana Petzeltová, Giulio Schimperna. Convergence to stationary solutions for a parabolic-hyperbolic phase-field system. Communications on Pure & Applied Analysis, 2006, 5 (4) : 827-838. doi: 10.3934/cpaa.2006.5.827

[17]

Stig-Olof Londen, Hana Petzeltová. Convergence of solutions of a non-local phase-field system. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 653-670. doi: 10.3934/dcdss.2011.4.653

[18]

Clesh Deseskel Elion Ekohela, Daniel Moukoko. On higher-order anisotropic perturbed Caginalp phase field systems. Electronic Research Announcements, 2019, 26: 36-53. doi: 10.3934/era.2019.26.004

[19]

Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044

[20]

Nobuyuki Kenmochi, Jürgen Sprekels. Phase-field systems with vectorial order parameters including diffusional hysteresis effects. Communications on Pure & Applied Analysis, 2002, 1 (4) : 495-511. doi: 10.3934/cpaa.2002.1.495

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]