
Previous Article
Multiresolution analysis for 2D turbulence. Part 1: Wavelets vs cosine packets, a comparative study
 DCDSB Home
 This Issue

Next Article
Traffic circles and timing of traffic lights for cars flow
Multiscale numerical method for nonlinear Maxwell equations
1.  Mathématiques Appliquées de Bordeaux, Université Bordeaux 1 et CNRS UMR 5466, 351 cours de la Libération, 33405 Talence cedex, France, France 
[1] 
W. Wei, H. M. Yin. Global solvability for a singular nonlinear Maxwell's equations. Communications on Pure & Applied Analysis, 2005, 4 (2) : 431444. doi: 10.3934/cpaa.2005.4.431 
[2] 
Björn Birnir, Niklas Wellander. Homogenized Maxwell's equations; A model for ceramic varistors. Discrete & Continuous Dynamical Systems  B, 2006, 6 (2) : 257272. doi: 10.3934/dcdsb.2006.6.257 
[3] 
Gang Bao. Mathematical modeling of nonlinear diffracvtive optics. Conference Publications, 1998, 1998 (Special) : 8999. doi: 10.3934/proc.1998.1998.89 
[4] 
Daomin Cao, Ezzat S. Noussair, Shusen Yan. On the profile of solutions for an elliptic problem arising in nonlinear optics. Discrete & Continuous Dynamical Systems  A, 2004, 11 (2&3) : 649666. doi: 10.3934/dcds.2004.11.649 
[5] 
M. Eller. On boundary regularity of solutions to Maxwell's equations with a homogeneous conservative boundary condition. Discrete & Continuous Dynamical Systems  S, 2009, 2 (3) : 473481. doi: 10.3934/dcdss.2009.2.473 
[6] 
Oleg Yu. Imanuvilov, Masahiro Yamamoto. Calderón problem for Maxwell's equations in cylindrical domain. Inverse Problems & Imaging, 2014, 8 (4) : 11171137. doi: 10.3934/ipi.2014.8.1117 
[7] 
B. L. G. Jonsson. Wave splitting of Maxwell's equations with anisotropic heterogeneous constitutive relations. Inverse Problems & Imaging, 2009, 3 (3) : 405452. doi: 10.3934/ipi.2009.3.405 
[8] 
Andreas Kirsch. An integral equation approach and the interior transmission problem for Maxwell's equations. Inverse Problems & Imaging, 2007, 1 (1) : 159179. doi: 10.3934/ipi.2007.1.159 
[9] 
Cleverson R. da Luz, Gustavo Alberto Perla Menzala. Uniform stabilization of anisotropic Maxwell's equations with boundary dissipation. Discrete & Continuous Dynamical Systems  S, 2009, 2 (3) : 547558. doi: 10.3934/dcdss.2009.2.547 
[10] 
Gang Bao, Bin Hu, Peijun Li, Jue Wang. Analysis of timedomain Maxwell's equations in biperiodic structures. Discrete & Continuous Dynamical Systems  B, 2017, 22 (11) : 128. doi: 10.3934/dcdsb.2019181 
[11] 
Dirk Pauly. On Maxwell's and Poincaré's constants. Discrete & Continuous Dynamical Systems  S, 2015, 8 (3) : 607618. doi: 10.3934/dcdss.2015.8.607 
[12] 
Kim Dang Phung. Energy decay for Maxwell's equations with Ohm's law in partially cubic domains. Communications on Pure & Applied Analysis, 2013, 12 (5) : 22292266. doi: 10.3934/cpaa.2013.12.2229 
[13] 
J. J. Morgan, HongMing Yin. On Maxwell's system with a thermal effect. Discrete & Continuous Dynamical Systems  B, 2001, 1 (4) : 485494. doi: 10.3934/dcdsb.2001.1.485 
[14] 
S. S. Krigman. Exact boundary controllability of Maxwell's equations with weak conductivity in the heterogeneous medium inside a general domain. Conference Publications, 2007, 2007 (Special) : 590601. doi: 10.3934/proc.2007.2007.590 
[15] 
Dina Kalinichenko, Volker Reitmann, Sergey Skopinov. Asymptotic behavior of solutions to a coupled system of Maxwell's equations and a controlled differential inclusion. Conference Publications, 2013, 2013 (special) : 407414. doi: 10.3934/proc.2013.2013.407 
[16] 
Cheng Hou Tsang, Boris A. Malomed, Kwok Wing Chow. Exact solutions for periodic and solitary matter waves in nonlinear lattices. Discrete & Continuous Dynamical Systems  S, 2011, 4 (5) : 12991325. doi: 10.3934/dcdss.2011.4.1299 
[17] 
Remi Sentis. Models and simulations for the laserplasma interaction and the threewave coupling problem. Discrete & Continuous Dynamical Systems  S, 2012, 5 (2) : 329343. doi: 10.3934/dcdss.2012.5.329 
[18] 
Tian Ma, Shouhong Wang. Gravitational Field Equations and Theory of Dark Matter and Dark Energy. Discrete & Continuous Dynamical Systems  A, 2014, 34 (2) : 335366. doi: 10.3934/dcds.2014.34.335 
[19] 
JiannSheng Jiang, ChiKun Lin, ChiHua Liu. Homogenization of the Maxwell's system for conducting media. Discrete & Continuous Dynamical Systems  B, 2008, 10 (1) : 91107. doi: 10.3934/dcdsb.2008.10.91 
[20] 
Shuangqian Liu, Qinghua Xiao. The relativistic VlasovMaxwellBoltzmann system for short range interaction. Kinetic & Related Models, 2016, 9 (3) : 515550. doi: 10.3934/krm.2016005 
2018 Impact Factor: 1.008
Tools
Metrics
Other articles
by authors
[Back to Top]