# American Institute of Mathematical Sciences

February  2005, 5(1): 15-33. doi: 10.3934/dcdsb.2005.5.15

## A generalized Poincaré-Birkhoff theorem with applications to coaxial vortex ring motion

 1 Department of Mathematical Sciences and Center for Applied Mathematics and Statistics, New Jersey Institute of Technology, Newark, NJ 07102-1984, United States, United States 2 Department of Mathematics and Computer Science, Rutgers University-Newark, Newark, NJ 07102, United States

Received  September 2003 Revised  February 2004 Published  November 2004

A new generalization of the Poincaré-Birkhoff fixed point theorem applying to small perturbations of finite-dimensional, completely integrable Hamiltonian systems is formulated and proved. The motivation for this theorem is an extension of some recent results of Blackmore and Knio on the dynamics of three coaxial vortex rings in an ideal fluid. In particular, it is proved using KAM theory and this new fixed point theorem that if $n>3$ coaxial rings all having vortex strengths of the same sign are initially in certain positions sufficiently close to one another in a three-dimensional ideal fluid environment, their motion with respect to the center of vorticity exhibits invariant $(n-1)$-dimensional tori comprised of quasiperiodic orbits together with interspersed periodic trajectories.
Citation: Denis Blackmore, Jyoti Champanerkar, Chengwen Wang. A generalized Poincaré-Birkhoff theorem with applications to coaxial vortex ring motion. Discrete & Continuous Dynamical Systems - B, 2005, 5 (1) : 15-33. doi: 10.3934/dcdsb.2005.5.15
 [1] Anna Gierzkiewicz, Klaudiusz Wójcik. Lefschetz sequences and detecting periodic points. Discrete & Continuous Dynamical Systems - A, 2012, 32 (1) : 81-100. doi: 10.3934/dcds.2012.32.81 [2] Marian Gidea, Yitzchak Shmalo. Combinatorial approach to detection of fixed points, periodic orbits, and symbolic dynamics. Discrete & Continuous Dynamical Systems - A, 2018, 38 (12) : 6123-6148. doi: 10.3934/dcds.2018264 [3] Liang Ding, Rongrong Tian, Jinlong Wei. Nonconstant periodic solutions with any fixed energy for singular Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1617-1625. doi: 10.3934/dcdsb.2018222 [4] Tiphaine Jézéquel, Patrick Bernard, Eric Lombardi. Homoclinic orbits with many loops near a $0^2 i\omega$ resonant fixed point of Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3153-3225. doi: 10.3934/dcds.2016.36.3153 [5] Juntao Sun, Jifeng Chu, Zhaosheng Feng. Homoclinic orbits for first order periodic Hamiltonian systems with spectrum point zero. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3807-3824. doi: 10.3934/dcds.2013.33.3807 [6] B. Buffoni, F. Giannoni. Brake periodic orbits of prescribed Hamiltonian for indefinite Lagrangian systems. Discrete & Continuous Dynamical Systems - A, 1995, 1 (2) : 217-222. doi: 10.3934/dcds.1995.1.217 [7] Juan Campos, Rafael Ortega. Location of fixed points and periodic solutions in the plane. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 517-523. doi: 10.3934/dcdsb.2008.9.517 [8] John Erik Fornæss. Periodic points of holomorphic twist maps. Discrete & Continuous Dynamical Systems - A, 2005, 13 (4) : 1047-1056. doi: 10.3934/dcds.2005.13.1047 [9] Álvaro Pelayo, San Vű Ngọc. First steps in symplectic and spectral theory of integrable systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3325-3377. doi: 10.3934/dcds.2012.32.3325 [10] Viktor L. Ginzburg, Başak Z. Gürel. On the generic existence of periodic orbits in Hamiltonian dynamics. Journal of Modern Dynamics, 2009, 3 (4) : 595-610. doi: 10.3934/jmd.2009.3.595 [11] Grzegorz Graff, Michał Misiurewicz, Piotr Nowak-Przygodzki. Periodic points of latitudinal maps of the $m$-dimensional sphere. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6187-6199. doi: 10.3934/dcds.2016070 [12] Chris Bernhardt. Vertex maps for trees: Algebra and periods of periodic orbits. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 399-408. doi: 10.3934/dcds.2006.14.399 [13] A. Carati. Center manifold of unstable periodic orbits of helium atom: numerical evidence. Discrete & Continuous Dynamical Systems - B, 2003, 3 (1) : 97-104. doi: 10.3934/dcdsb.2003.3.97 [14] Silvia Sastre-Gomez. Equivalent formulations for steady periodic water waves of fixed mean-depth with discontinuous vorticity. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2669-2680. doi: 10.3934/dcds.2017114 [15] Roberta Fabbri, Carmen Núñez, Ana M. Sanz. A perturbation theorem for linear Hamiltonian systems with bounded orbits. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 623-635. doi: 10.3934/dcds.2005.13.623 [16] Fei Liu, Jaume Llibre, Xiang Zhang. Heteroclinic orbits for a class of Hamiltonian systems on Riemannian manifolds. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 1097-1111. doi: 10.3934/dcds.2011.29.1097 [17] Ying Lv, Yan-Fang Xue, Chun-Lei Tang. Homoclinic orbits for a class of asymptotically quadratic Hamiltonian systems. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2855-2878. doi: 10.3934/cpaa.2019128 [18] Alain Jacquemard, Weber Flávio Pereira. On periodic orbits of polynomial relay systems. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 331-347. doi: 10.3934/dcds.2007.17.331 [19] Roman Šimon Hilscher. On general Sturmian theory for abnormal linear Hamiltonian systems. Conference Publications, 2011, 2011 (Special) : 684-691. doi: 10.3934/proc.2011.2011.684 [20] César J. Niche. Non-contractible periodic orbits of Hamiltonian flows on twisted cotangent bundles. Discrete & Continuous Dynamical Systems - A, 2006, 14 (4) : 617-630. doi: 10.3934/dcds.2006.14.617

2018 Impact Factor: 1.008