May  2003, 3(2): 285-298. doi: 10.3934/dcdsb.2003.3.285

The coupled PDE system of a composite (sandwich) beam revisited

1. 

Department of Mathematics, University of Virginia, P.O. Box 400137, Charlottesville, VA 22904

Received  April 2002 Revised  February 2003 Published  February 2003

In this paper we consider the coupled PDE system which describes a composite (sandwich) beam, as recently proposed in [H.1], [H-S.1]: it couples the transverse displacement $w$ and the effective rotation angle $\xi$ of the beam. We show that by introducing a suitable new variable $\theta$, the original model in the original variables $\{w,\xi\}$ of the sandwich beam is transformed into a canonical thermoelastic system in the new variables $\{w,\theta\}$, modulo lower-order terms. This reduction then allows us to re-obtain recently established results on the sandwich beam--which had been proved by a direct, ad hoc technical analysis [H-L.1]--simply as corollaries of previously established corresponding results [A-L.1], [A-L.2], [L-T.1]--[L-T.5] on thermoelastic systems. These include the following known results [H-L.1] for sandwich beams: (i) well-posedness in the semigroup sense; (ii) analyticity of the semigroup when rotational forces are not accounted for; (iii) structural decomposition of the semigroup when rotational forces are accounted for; and (iv) uniform stability.
In addition, however, through the aforementioned reduction to thermoelastic problems, we here establish new results for sandwich beams, when rotational forces are accounted for. They include: (i) a backward uniqueness property (Section 4), and (ii) a suitable singular estimate, critical in control theory (Section 5). Finally, we obtain a new backward uniqueness property, this time for a structural acoustic chamber having a composite (sandwich) beam as its flexible wall (Section 6).
Citation: Roberto Triggiani. The coupled PDE system of a composite (sandwich) beam revisited. Discrete & Continuous Dynamical Systems - B, 2003, 3 (2) : 285-298. doi: 10.3934/dcdsb.2003.3.285
[1]

Kokum R. De Silva, Tuoc V. Phan, Suzanne Lenhart. Advection control in parabolic PDE systems for competitive populations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 1049-1072. doi: 10.3934/dcdsb.2017052

[2]

Martin Schechter. Monotonicity methods for infinite dimensional sandwich systems. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 455-468. doi: 10.3934/dcds.2010.28.455

[3]

David L. Russell. Modeling and control of hybrid beam systems with rotating tip component. Evolution Equations & Control Theory, 2014, 3 (2) : 305-329. doi: 10.3934/eect.2014.3.305

[4]

Roberto Triggiani. Sharp regularity of hyperbolic-dominated thermoelastic systems with point control: the clamped case. Conference Publications, 2007, 2007 (Special) : 993-1004. doi: 10.3934/proc.2007.2007.993

[5]

Enrique Fernández-Cara, Diego A. Souza. On the control of some coupled systems of the Boussinesq kind with few controls. Mathematical Control & Related Fields, 2012, 2 (2) : 121-140. doi: 10.3934/mcrf.2012.2.121

[6]

Wenmin Gong, Guangcun Lu. On coupled Dirac systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4329-4346. doi: 10.3934/dcds.2017185

[7]

Reinhard Racke. Instability of coupled systems with delay. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1753-1773. doi: 10.3934/cpaa.2012.11.1753

[8]

R.H. Fabiano, Scott W. Hansen. Modeling and analysis of a three-layer damped sandwich beam. Conference Publications, 2001, 2001 (Special) : 143-155. doi: 10.3934/proc.2001.2001.143

[9]

Aaron A. Allen, Scott W. Hansen. Analyticity and optimal damping for a multilayer Mead-Markus sandwich beam. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1279-1292. doi: 10.3934/dcdsb.2010.14.1279

[10]

A. Özkan Özer, Scott W. Hansen. Uniform stabilization of a multilayer Rao-Nakra sandwich beam. Evolution Equations & Control Theory, 2013, 2 (4) : 695-710. doi: 10.3934/eect.2013.2.695

[11]

Scott W. Hansen, Rajeev Rajaram. Riesz basis property and related results for a Rao-Nakra sandwich beam. Conference Publications, 2005, 2005 (Special) : 365-375. doi: 10.3934/proc.2005.2005.365

[12]

Rajeev Rajaram, Scott W. Hansen. Null controllability of a damped Mead-Markus sandwich beam. Conference Publications, 2005, 2005 (Special) : 746-755. doi: 10.3934/proc.2005.2005.746

[13]

Salim A. Messaoudi, Abdelfeteh Fareh. Exponential decay for linear damped porous thermoelastic systems with second sound. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 599-612. doi: 10.3934/dcdsb.2015.20.599

[14]

Flank D. M. Bezerra, Vera L. Carbone, Marcelo J. D. Nascimento, Karina Schiabel. Pullback attractors for a class of non-autonomous thermoelastic plate systems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3553-3571. doi: 10.3934/dcdsb.2017214

[15]

Matthias Gerdts, Sven-Joachim Kimmerle. Numerical optimal control of a coupled ODE-PDE model of a truck with a fluid basin. Conference Publications, 2015, 2015 (special) : 515-524. doi: 10.3934/proc.2015.0515

[16]

Andrew D. Lewis. Linearisation of tautological control systems. Journal of Geometric Mechanics, 2016, 8 (1) : 99-138. doi: 10.3934/jgm.2016.8.99

[17]

Fatiha Alabau-Boussouira. On the influence of the coupling on the dynamics of single-observed cascade systems of PDE's. Mathematical Control & Related Fields, 2015, 5 (1) : 1-30. doi: 10.3934/mcrf.2015.5.1

[18]

Wenxiong Chen, Congming Li. Super polyharmonic property of solutions for PDE systems and its applications. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2497-2514. doi: 10.3934/cpaa.2013.12.2497

[19]

Felipe Wallison Chaves-Silva, Sergio Guerrero, Jean Pierre Puel. Controllability of fast diffusion coupled parabolic systems. Mathematical Control & Related Fields, 2014, 4 (4) : 465-479. doi: 10.3934/mcrf.2014.4.465

[20]

Diogo A. Gomes, Gabriele Terrone. Bernstein estimates: weakly coupled systems and integral equations. Communications on Pure & Applied Analysis, 2012, 11 (3) : 861-883. doi: 10.3934/cpaa.2012.11.861

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]