
Previous Article
Computational information for the logistic map at the chaos threshold
 DCDSB Home
 This Issue

Next Article
Renormalization for cubic frequency invariant tori in Hamiltonian systems with two degrees of freedom
Singular perturbation analysis for the reduction of complex chemistry in gaseous mixtures using the entropic structure
1.  Laboratoire de Mathématiques Appliquées de Lyon, Université Claude Bernard, Lyon 1, 69622 Villeurbanne Cedex, France 
[1] 
Stéphane Chrétien, Sébastien Darses, Christophe Guyeux, Paul Clarkson. On the pinning controllability of complex networks using perturbation theory of extreme singular values. application to synchronisation in power grids. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 289299. doi: 10.3934/naco.2017019 
[2] 
Manfred Deistler. Singular arma systems: A structure theory. Numerical Algebra, Control & Optimization, 2019, 9 (3) : 383391. doi: 10.3934/naco.2019025 
[3] 
Ilona Gucwa, Peter Szmolyan. Geometric singular perturbation analysis of an autocatalator model. Discrete & Continuous Dynamical Systems  S, 2009, 2 (4) : 783806. doi: 10.3934/dcdss.2009.2.783 
[4] 
Fabio Camilli, Annalisa Cesaroni. A note on singular perturbation problems via AubryMather theory. Discrete & Continuous Dynamical Systems  A, 2007, 17 (4) : 807819. doi: 10.3934/dcds.2007.17.807 
[5] 
Chaoqun Huang, Nung Kwan Yip. Singular perturbation and bifurcation of diffuse transition layers in inhomogeneous media, part II. Networks & Heterogeneous Media, 2015, 10 (4) : 897948. doi: 10.3934/nhm.2015.10.897 
[6] 
Wei Wang, Yan Lv. Limit behavior of nonlinear stochastic wave equations with singular perturbation. Discrete & Continuous Dynamical Systems  B, 2010, 13 (1) : 175193. doi: 10.3934/dcdsb.2010.13.175 
[7] 
Nathan GlattHoltz, Mohammed Ziane. Singular perturbation systems with stochastic forcing and the renormalization group method. Discrete & Continuous Dynamical Systems  A, 2010, 26 (4) : 12411268. doi: 10.3934/dcds.2010.26.1241 
[8] 
Chaoqun Huang, Nung Kwan Yip. Singular perturbation and bifurcation of diffuse transition layers in inhomogeneous media, part I. Networks & Heterogeneous Media, 2013, 8 (4) : 10091034. doi: 10.3934/nhm.2013.8.1009 
[9] 
Chris Guiver. The generalised singular perturbation approximation for bounded real and positive real control systems. Mathematical Control & Related Fields, 2019, 9 (2) : 313350. doi: 10.3934/mcrf.2019016 
[10] 
Francis C. Motta, Patrick D. Shipman. Informing the structure of complex Hadamard matrix spaces using a flow. Discrete & Continuous Dynamical Systems  S, 2018, 0 (0) : 23492364. doi: 10.3934/dcdss.2019147 
[11] 
Jérôme Buzzi, Todd Fisher. Entropic stability beyond partial hyperbolicity. Journal of Modern Dynamics, 2013, 7 (4) : 527552. doi: 10.3934/jmd.2013.7.527 
[12] 
ZhengJian Bai, XiaoQing Jin, SeakWeng Vong. On some inverse singular value problems with Toeplitzrelated structure. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 187192. doi: 10.3934/naco.2012.2.187 
[13] 
Hiroshi Morishita, Eiji Yanagida, Shoji Yotsutani. Structure of positive radial solutions including singular solutions to Matukuma's equation. Communications on Pure & Applied Analysis, 2005, 4 (4) : 871888. doi: 10.3934/cpaa.2005.4.871 
[14] 
Marina Ghisi, Massimo Gobbino. Hyperbolicparabolic singular perturbation for mildly degenerate Kirchhoff equations: Globalintime error estimates. Communications on Pure & Applied Analysis, 2009, 8 (4) : 13131332. doi: 10.3934/cpaa.2009.8.1313 
[15] 
Stefano Scrobogna. Derivation of limit equations for a singular perturbation of a 3D periodic Boussinesq system. Discrete & Continuous Dynamical Systems  A, 2017, 37 (12) : 59796034. doi: 10.3934/dcds.2017259 
[16] 
John M. Hong, ChengHsiung Hsu, BoChih Huang, TziSheng Yang. Geometric singular perturbation approach to the existence and instability of stationary waves for viscous traffic flow models. Communications on Pure & Applied Analysis, 2013, 12 (3) : 15011526. doi: 10.3934/cpaa.2013.12.1501 
[17] 
Navnit Jha. Nonpolynomial spline finite difference scheme for nonlinear singuiar boundary value problems with singular perturbation and its mechanization. Conference Publications, 2013, 2013 (special) : 355363. doi: 10.3934/proc.2013.2013.355 
[18] 
Zainidin Eshkuvatov. Homotopy perturbation method and Chebyshev polynomials for solving a class of singular and hypersingular integral equations. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 337350. doi: 10.3934/naco.2018022 
[19] 
Sheri M. Markose. Complex type 4 structure changing dynamics of digital agents: Nash equilibria of a game with arms race in innovations. Journal of Dynamics & Games, 2017, 4 (3) : 255284. doi: 10.3934/jdg.2017015 
[20] 
Robert H. Dillon, Jingxuan Zhuo. Using the immersed boundary method to model complex fluidsstructure interaction in sperm motility. Discrete & Continuous Dynamical Systems  B, 2011, 15 (2) : 343355. doi: 10.3934/dcdsb.2011.15.343 
2018 Impact Factor: 1.008
Tools
Metrics
Other articles
by authors
[Back to Top]