• Previous Article
    Homogeneous solutions of stationary Navier-Stokes equations with isolated singularities on the unit sphere. Ⅲ. Two singularities
  • DCDS Home
  • This Issue
  • Next Article
    The fractional Schrödinger equation with singular potential and measure data
December  2019, 39(12): 7141-7162. doi: 10.3934/dcds.2019299

Predator-prey models with competition, Part Ⅲ: Classification of stationary solutions

1. 

École des Hautes Études en Sciences Sociales, Centre d'analyse et de mathématique sociales (CAMS), CNRS, 54 bouvelard Raspail, 75006, Paris, France

2. 

Université Paris Diderot, Université de Paris, Laboratoire Jacques-Louis Lions (CNRS UMR 7598), 8 place Aurélie Nemours, 75205, Paris CEDEX 13, France

* Corresponding author: Henri Berestycki

To Luis Caffarelli, with admiration and affection

Received  December 2018 Revised  May 2019 Published  September 2019

For a stationary system representing prey and $ N $ groups of competing predators, we show classification results about the set of positive solutions. In particular, we show that if the number of components $ N $ is too large or if the competition between different groups is too small, then the system has only constant solutions, which we then completely characterize.

Citation: Henri Berestycki, Alessandro Zilio. Predator-prey models with competition, Part Ⅲ: Classification of stationary solutions. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7141-7162. doi: 10.3934/dcds.2019299
References:
[1]

H. W. Alt, L. A. Caffarelli and A. Friedman, Variational problems with two phases and their free boundaries, Trans. Amer. Math. Soc., 282 (1984), 431–461, http://dx.doi.org/10.2307/1999245. doi: 10.1090/S0002-9947-1984-0732100-6. Google Scholar

[2]

H. Berestycki and A. Zilio, Predators-prey models with competition, Part Ⅱ: uniform regularity estimates, In preparation.Google Scholar

[3]

H. Berestycki and A. Zilio, Predators-prey models with competition, part ⅰ: Existence, bifurcation and qualitative properties, Communications in Contemporary Mathematics, 20 (2018), 1850010, 53pp. doi: 10.1142/S0219199718500104. Google Scholar

[4]

H. Berestycki and A. Zilio, Predator-prey models with competition: The emergence of territoriality, The American Naturalist, 193 (2019), 436-446. doi: 10.1086/701670. Google Scholar

[5]

L. CaffarelliS. Patrizi and V. Quitalo, On a long range segregation model, J. Eur. Math. Soc. (JEMS), 19 (2017), 3575-3628. doi: 10.4171/JEMS/747. Google Scholar

[6]

L. A. CaffarelliA. L. Karakhanyan and F.-H. Lin, The geometry of solutions to a segregation problem for nondivergence systems, J. Fixed Point Theory Appl., 5 (2009), 319-351. doi: 10.1007/s11784-009-0110-0. Google Scholar

[7]

L. A. Caffarelli and F.-H. Lin, Singularly perturbed elliptic systems and multi-valued harmonic functions with free boundaries, J. Amer. Math. Soc., 21 (2008), 847-862. doi: 10.1090/S0894-0347-08-00593-6. Google Scholar

[8]

L. A. Caffarelli and S. Salsa, A Geometric Approach to the Free Boundary Problems, Graduate Studies in Mathematics, 68. American Mathematical Society, Providence, RI, 2005. doi: 10.1090/gsm/068. Google Scholar

[9]

M. ContiS. Terracini and G. Verzini, Asymptotic estimates for the spatial segregation of competitive systems, Adv. Math., 195 (2005), 524-560. doi: 10.1016/j.aim.2004.08.006. Google Scholar

[10]

M. ContiS. Terracini and G. Verzini, A variational problem for the spatial segregation of reaction-diffusion systems, Indiana Univ. Math. J., 54 (2005), 779-815. doi: 10.1512/iumj.2005.54.2506. Google Scholar

[11]

E. N. Dancer and Y. H. Du, Competing species equations with diffusion, large interactions, and jumping nonlinearities, J. Differential Equations, 114 (1994), 434-475. doi: 10.1006/jdeq.1994.1156. Google Scholar

[12]

E. N. DancerK. Wang and Z. Zhang, Dynamics of strongly competing systems with many species, Trans. Amer. Math. Soc., 364 (2012), 961-1005. doi: 10.1090/S0002-9947-2011-05488-7. Google Scholar

[13]

E. Dancer and Y. Du, Positive solutions for a three-species competition system with diffusion–Ⅰ. general existence results, Nonlinear Analysis: Theory, Methods & Applications, 24 (1995), 337–357, http://www.sciencedirect.com/science/article/pii/0362546X94E0063M. doi: 10.1016/0362-546X(94)E0063-M. Google Scholar

[14]

E. Dancer and Y. Du, Positive solutions for a three-species competition system with diffusion–Ⅱ. the case of equal birth rates, Nonlinear Analysis: Theory, Methods & Applications, 24 (1995), 359–373, http://www.sciencedirect.com/science/article/pii/0362546X94E0064N. doi: 10.1016/0362-546X(94)E0064-N. Google Scholar

[15]

H. Jung, Ueber die kleinste Kugel, die eine räumliche Figur einschliesst, J. Reine Angew. Math., 123 (1901), 241-257. doi: 10.1515/crll.1901.123.241. Google Scholar

[16]

M. Mimura, Asymptotic behaviors of a parabolic system related to a planktonic prey and predator model, SIAM J. Appl. Math., 37 (1979), 499-512. doi: 10.1137/0137039. Google Scholar

[17]

N. Soave and A. Zilio, Uniform bounds for strongly competing systems: The optimal Lipschitz case, Arch. Ration. Mech. Anal., 218 (2015), 647-697. doi: 10.1007/s00205-015-0867-9. Google Scholar

[18]

S. Terracini, G. Verzini and A. Zilio, Spiraling asymptotic profiles of competition-diffusion systems, Communications on Pure and Applied Mathematics, 2019. doi: 10.1002/cpa.21823. Google Scholar

[19]

G. Verzini and A. Zilio, Strong competition versus fractional diffusion: The case of Lotka-Volterra interaction, Comm. Partial Differential Equations, 39 (2014), 2284-2313. doi: 10.1080/03605302.2014.890627. Google Scholar

[20]

V. Volterra, Variations and fluctuations of the number of individuals in animal species living together, Journal du Cons. Int. Explor. Mer, 3 (1928), 3-51. doi: 10.1093/icesjms/3.1.3. Google Scholar

show all references

References:
[1]

H. W. Alt, L. A. Caffarelli and A. Friedman, Variational problems with two phases and their free boundaries, Trans. Amer. Math. Soc., 282 (1984), 431–461, http://dx.doi.org/10.2307/1999245. doi: 10.1090/S0002-9947-1984-0732100-6. Google Scholar

[2]

H. Berestycki and A. Zilio, Predators-prey models with competition, Part Ⅱ: uniform regularity estimates, In preparation.Google Scholar

[3]

H. Berestycki and A. Zilio, Predators-prey models with competition, part ⅰ: Existence, bifurcation and qualitative properties, Communications in Contemporary Mathematics, 20 (2018), 1850010, 53pp. doi: 10.1142/S0219199718500104. Google Scholar

[4]

H. Berestycki and A. Zilio, Predator-prey models with competition: The emergence of territoriality, The American Naturalist, 193 (2019), 436-446. doi: 10.1086/701670. Google Scholar

[5]

L. CaffarelliS. Patrizi and V. Quitalo, On a long range segregation model, J. Eur. Math. Soc. (JEMS), 19 (2017), 3575-3628. doi: 10.4171/JEMS/747. Google Scholar

[6]

L. A. CaffarelliA. L. Karakhanyan and F.-H. Lin, The geometry of solutions to a segregation problem for nondivergence systems, J. Fixed Point Theory Appl., 5 (2009), 319-351. doi: 10.1007/s11784-009-0110-0. Google Scholar

[7]

L. A. Caffarelli and F.-H. Lin, Singularly perturbed elliptic systems and multi-valued harmonic functions with free boundaries, J. Amer. Math. Soc., 21 (2008), 847-862. doi: 10.1090/S0894-0347-08-00593-6. Google Scholar

[8]

L. A. Caffarelli and S. Salsa, A Geometric Approach to the Free Boundary Problems, Graduate Studies in Mathematics, 68. American Mathematical Society, Providence, RI, 2005. doi: 10.1090/gsm/068. Google Scholar

[9]

M. ContiS. Terracini and G. Verzini, Asymptotic estimates for the spatial segregation of competitive systems, Adv. Math., 195 (2005), 524-560. doi: 10.1016/j.aim.2004.08.006. Google Scholar

[10]

M. ContiS. Terracini and G. Verzini, A variational problem for the spatial segregation of reaction-diffusion systems, Indiana Univ. Math. J., 54 (2005), 779-815. doi: 10.1512/iumj.2005.54.2506. Google Scholar

[11]

E. N. Dancer and Y. H. Du, Competing species equations with diffusion, large interactions, and jumping nonlinearities, J. Differential Equations, 114 (1994), 434-475. doi: 10.1006/jdeq.1994.1156. Google Scholar

[12]

E. N. DancerK. Wang and Z. Zhang, Dynamics of strongly competing systems with many species, Trans. Amer. Math. Soc., 364 (2012), 961-1005. doi: 10.1090/S0002-9947-2011-05488-7. Google Scholar

[13]

E. Dancer and Y. Du, Positive solutions for a three-species competition system with diffusion–Ⅰ. general existence results, Nonlinear Analysis: Theory, Methods & Applications, 24 (1995), 337–357, http://www.sciencedirect.com/science/article/pii/0362546X94E0063M. doi: 10.1016/0362-546X(94)E0063-M. Google Scholar

[14]

E. Dancer and Y. Du, Positive solutions for a three-species competition system with diffusion–Ⅱ. the case of equal birth rates, Nonlinear Analysis: Theory, Methods & Applications, 24 (1995), 359–373, http://www.sciencedirect.com/science/article/pii/0362546X94E0064N. doi: 10.1016/0362-546X(94)E0064-N. Google Scholar

[15]

H. Jung, Ueber die kleinste Kugel, die eine räumliche Figur einschliesst, J. Reine Angew. Math., 123 (1901), 241-257. doi: 10.1515/crll.1901.123.241. Google Scholar

[16]

M. Mimura, Asymptotic behaviors of a parabolic system related to a planktonic prey and predator model, SIAM J. Appl. Math., 37 (1979), 499-512. doi: 10.1137/0137039. Google Scholar

[17]

N. Soave and A. Zilio, Uniform bounds for strongly competing systems: The optimal Lipschitz case, Arch. Ration. Mech. Anal., 218 (2015), 647-697. doi: 10.1007/s00205-015-0867-9. Google Scholar

[18]

S. Terracini, G. Verzini and A. Zilio, Spiraling asymptotic profiles of competition-diffusion systems, Communications on Pure and Applied Mathematics, 2019. doi: 10.1002/cpa.21823. Google Scholar

[19]

G. Verzini and A. Zilio, Strong competition versus fractional diffusion: The case of Lotka-Volterra interaction, Comm. Partial Differential Equations, 39 (2014), 2284-2313. doi: 10.1080/03605302.2014.890627. Google Scholar

[20]

V. Volterra, Variations and fluctuations of the number of individuals in animal species living together, Journal du Cons. Int. Explor. Mer, 3 (1928), 3-51. doi: 10.1093/icesjms/3.1.3. Google Scholar

Figure 1.  Pictorial description of Theorem 1.1
[1]

Soohyun Bae. Classification of positive solutions of semilinear elliptic equations with Hardy term. Conference Publications, 2013, 2013 (special) : 31-39. doi: 10.3934/proc.2013.2013.31

[2]

Jingyu Li. Asymptotic behavior of solutions to elliptic equations in a coated body. Communications on Pure & Applied Analysis, 2009, 8 (4) : 1251-1267. doi: 10.3934/cpaa.2009.8.1251

[3]

Zhong Tan, Leilei Tong. Asymptotic stability of stationary solutions for magnetohydrodynamic equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3435-3465. doi: 10.3934/dcds.2017146

[4]

Hwai-Chiuan Wang. Stability and symmetry breaking of solutions of semilinear elliptic equations. Conference Publications, 2005, 2005 (Special) : 886-894. doi: 10.3934/proc.2005.2005.886

[5]

Yuxia Guo, Jianjun Nie. Classification for positive solutions of degenerate elliptic system. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1457-1475. doi: 10.3934/dcds.2018130

[6]

Limei Dai. Entire solutions with asymptotic behavior of fully nonlinear uniformly elliptic equations. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1707-1714. doi: 10.3934/cpaa.2011.10.1707

[7]

Shinji Adachi, Masataka Shibata, Tatsuya Watanabe. Asymptotic behavior of positive solutions for a class of quasilinear elliptic equations with general nonlinearities. Communications on Pure & Applied Analysis, 2014, 13 (1) : 97-118. doi: 10.3934/cpaa.2014.13.97

[8]

Chang-Shou Lin, Lei Zhang. Classification of radial solutions to Liouville systems with singularities. Discrete & Continuous Dynamical Systems - A, 2014, 34 (6) : 2617-2637. doi: 10.3934/dcds.2014.34.2617

[9]

La-Su Mai, Kaijun Zhang. Asymptotic stability of steady state solutions for the relativistic Euler-Poisson equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 981-1004. doi: 10.3934/dcds.2016.36.981

[10]

Mustafa Hasanbulli, Yuri V. Rogovchenko. Classification of nonoscillatory solutions of nonlinear neutral differential equations. Conference Publications, 2009, 2009 (Special) : 340-348. doi: 10.3934/proc.2009.2009.340

[11]

Shoichi Hasegawa. Stability and separation property of radial solutions to semilinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (7) : 4127-4136. doi: 10.3934/dcds.2019166

[12]

Evelyn Buckwar, Girolama Notarangelo. A note on the analysis of asymptotic mean-square stability properties for systems of linear stochastic delay differential equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1521-1531. doi: 10.3934/dcdsb.2013.18.1521

[13]

Dumitru Motreanu. Three solutions with precise sign properties for systems of quasilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2012, 5 (4) : 831-843. doi: 10.3934/dcdss.2012.5.831

[14]

Craig Cowan. Uniqueness of solutions for elliptic systems and fourth order equations involving a parameter. Communications on Pure & Applied Analysis, 2016, 15 (2) : 519-533. doi: 10.3934/cpaa.2016.15.519

[15]

Francesca Alessio, Piero Montecchiari, Andrea Sfecci. Saddle solutions for a class of systems of periodic and reversible semilinear elliptic equations. Networks & Heterogeneous Media, 2019, 14 (3) : 567-587. doi: 10.3934/nhm.2019022

[16]

Guangliang Zhao, Fuke Wu, George Yin. Feedback controls to ensure global solutions and asymptotic stability of Markovian switching diffusion systems. Mathematical Control & Related Fields, 2015, 5 (2) : 359-376. doi: 10.3934/mcrf.2015.5.359

[17]

Vasily Denisov and Andrey Muravnik. On asymptotic behavior of solutions of the Dirichlet problem in half-space for linear and quasi-linear elliptic equations. Electronic Research Announcements, 2003, 9: 88-93.

[18]

Veronica Felli, Ana Primo. Classification of local asymptotics for solutions to heat equations with inverse-square potentials. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 65-107. doi: 10.3934/dcds.2011.31.65

[19]

Wei Dai, Jiahui Huang, Yu Qin, Bo Wang, Yanqin Fang. Regularity and classification of solutions to static Hartree equations involving fractional Laplacians. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1389-1403. doi: 10.3934/dcds.2018117

[20]

Hua Chen, Nian Liu. Asymptotic stability and blow-up of solutions for semi-linear edge-degenerate parabolic equations with singular potentials. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 661-682. doi: 10.3934/dcds.2016.36.661

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (83)
  • HTML views (51)
  • Cited by (0)

Other articles
by authors

[Back to Top]