November  2019, 39(11): 6761-6784. doi: 10.3934/dcds.2019294

On the uniqueness of bound state solutions of a semilinear equation with weights

Departamento de Matemática, Pontificia Universidad Católica de Chile, Casilla 306, Correo 22, Santiago, Chile

Received  May 2019 Revised  May 2019 Published  August 2019

Fund Project: This research was supported by FONDECYT-1190102 for the first and second author, FONDECYT-1160540 for the second author and FONDECYT-1170665 for third author

We consider radial solutions of a general elliptic equation involving a weighted Laplace operator. We establish the uniqueness of the radial bound state solutions to
$ \mbox{div}\big(\mathsf A\, \nabla v\big)+\mathsf B\, f(v) = 0\, , \quad\lim\limits_{|x|\to+\infty}v(x) = 0, \quad x\in\mathbb R^n, ~~~~{(P)} $
$ n>2 $
, where
$ \mathsf A $
and
$ \mathsf B $
are two positive, radial, smooth functions defined on
$ \mathbb R^n\setminus\{0\} $
. We assume that the nonlinearity
$ f\in C(-c, c) $
,
$ 0<c\le\infty $
is an odd function satisfying some convexity and growth conditions, and has a zero at
$ b>0 $
, is non positive and not identically 0 in
$ (0, b) $
, positive in
$ (b, c) $
, and is differentiable in
$ (0, c) $
.
Citation: Carmen Cortázar, Marta García-Huidobro, Pilar Herreros. On the uniqueness of bound state solutions of a semilinear equation with weights. Discrete & Continuous Dynamical Systems - A, 2019, 39 (11) : 6761-6784. doi: 10.3934/dcds.2019294
References:
[1]

C. C. Chen and C. S. Lin, Uniqueness of the ground state solutions of $\Delta u+f(u) = 0$ in $\mathbb R^N, $ $N\ge 3, $, Comm. in Partial Differential Equations, 16 (1991), 1549-1572. doi: 10.1080/03605309108820811. Google Scholar

[2]

C. V. Coffman, Uniqueness of the ground state solution of $\Delta u-u+u^3 = 0$ and a variational characterization of other solutions, Archive Rat. Mech. Anal., 46 (1972), 81-95. doi: 10.1007/BF00250684. Google Scholar

[3]

C. CortázarP. Felmer and M. Elgueta, On a semilinear elliptic problem in $\mathbb R^N$ with a non Lipschitzian nonlinearity, Advances in Differential Equations, 1 (1996), 199-218. Google Scholar

[4]

C. CortázarP. Felmer and M. Elgueta, Uniqueness of positive solutions of $\Delta u+f(u) = 0$ in $\mathbb R^N$, $N\ge 3$, Archive Rat. Mech. Anal., 142 (1998), 127-141. doi: 10.1007/s002050050086. Google Scholar

[5]

C. Cortázar and M. García-Huidobro, On the uniqueness of ground state solutions of a semilinear equation containing a weighted Laplacian, Comm. Pure. Appl. Anal., 5 (2006), 813-826. doi: 10.3934/cpaa.2006.5.813. Google Scholar

[6]

C. CortázarJ. DolbeaultM. García-Huidobro and R. Manásevich, Existence of sign changing solutions for an equation with a weighted p-Laplace operator, Nonlinear Anal., 110 (2014), 1-22. doi: 10.1016/j.na.2014.07.016. Google Scholar

[7]

C. CortázarM. García-Huidobro and C. Yarur, On the uniqueness of the second bound state solution of a semilinear equation, Annales de l'Institut Henri Poincaré - Analyse non linéaire, 26 (2009), 2091-2110. doi: 10.1016/j.anihpc.2009.01.004. Google Scholar

[8]

C. CortázarM. García-Huidobroand and C. Yarur, On the uniqueness of sign changing bound state solutions of a semilinear equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28 (2011), 599-621. doi: 10.1016/j.anihpc.2011.04.002. Google Scholar

[9]

C. CortázarM. García-Huidobro and C. Yarur, On the existence of sign changing bound state solutions of a quasilinear equation, J. Differential Equations, 254 (2013), 2603-2625. doi: 10.1016/j.jde.2012.12.015. Google Scholar

[10]

L. Erbe and M. Tang, Uniqueness theorems for positive solutions of quasilinear elliptic equations in a ball, J. Diff. Equations, 138 (1997), 351-379. doi: 10.1006/jdeq.1997.3279. Google Scholar

[11]

B. FranchiE. Lanconelli and J. Serrin, Existence and Uniqueness of nonnegative solutions of quasilinear equations in $\mathbb R^n$, Advances in Mathematics, 118 (1996), 177-243. doi: 10.1006/aima.1996.0021. Google Scholar

[12]

M. García-Huidobro and D. Henao, On the uniqueness of positive solutions of a quasilinear equation containing a weighted $p$-Laplacian, Comm. in Contemp. Math., 10 (2008), 405-432. doi: 10.1142/S0219199708002831. Google Scholar

[13]

R. Kajikiya, Necessary and sufficient condition for existence and uniqueness of nodal solutions to sublinear elliptic equations., Adv. Differential Equations, 6 (2001), 1317-1346. Google Scholar

[14]

M. K. Kwong, Uniqueness of positive solutions of $\Delta u-u+u^p = 0$, Archive Rat. Mech. Anal., 105 (1989), 243-266. doi: 10.1007/BF00251502. Google Scholar

[15]

K. McLeod, Uniqueness of positive radial solutions of $\Delta u+f(u) = 0$ in $\mathbb R^N $ ,Ⅱ, Trans. Amer. Math. Soc., 339 (1993), 495-505. Google Scholar

[16]

K. McLeod and J. Serrin, Uniqueness of positive radial solutions of $\Delta u+f(u) = 0$ in $\mathbb R^N $, Arch. Rational Mech. Anal., 99 (1987), 115-145. doi: 10.1007/BF00275874. Google Scholar

[17]

K. McLeodW. C. Troy and F. B. Weissler, Radial solutions of $\Delta u+f(u) = 0$ with prescribed numbers of zeros, J. Differential Equations, 83 (1990), 368-378. doi: 10.1016/0022-0396(90)90063-U. Google Scholar

[18]

L. Peletier and J. Serrin, Uniqueness of positive solutions of quasilinear equations, Archive Rat. Mech. Anal., 81 (1983), 181-197. doi: 10.1007/BF00250651. Google Scholar

[19]

L. Peletier and J. Serrin, Uniqueness of nonnegative solutions of quasilinear equations, J. Diff. Equat., 61 (1986), 380-397. doi: 10.1016/0022-0396(86)90112-9. Google Scholar

[20]

P. Pucci, M. Garca-Huidobro, R. Mansevich and J. Serrin, Qualitative properties of ground states for singular elliptic equations with weights, Ann. Mat. Pura Appl., (4) 185 (2006), S205–S243. doi: 10.1007/s10231-004-0143-3. Google Scholar

[21]

P. R. Pucci and J. Serrin, Uniqueness of ground states for quasilinear elliptic operators, Indiana Univ. Math. J., 47 (1998), 501-528. Google Scholar

[22]

J. Serrin and M. Tang, Uniqueness of ground states for quasilinear elliptic equations, Indiana Univ. Math. J., 49 (2000), 897-923. Google Scholar

[23]

S. Tanaka, On the uniqueness of solutions with prescribed numbers of zeros for a two-point boundary value problem, Differential Integral Equations, 20 (2007), 93-104. Google Scholar

[24]

S. Tanaka, Uniqueness of nodal radial solutions of superlinear elliptic equations in a ball, Proc. Roy. Soc. Edinburgh Sect. A, 138 (2008), 1331-1343. doi: 10.1017/S0308210507000431. Google Scholar

[25]

S. Tanaka, Uniqueness and nonuniqueness of nodal radial solutions of sublinear elliptic equations in a ball, Nonlinear Anal., 71 (2009), 5256-5267. doi: 10.1016/j.na.2009.04.009. Google Scholar

[26]

S. Tanaka, Uniqueness of sign-changing radial solutions for $\Delta u-u+|u|^{p-1}u=0$ in some ball and annulus, J. Math. Anal. Appl., 439 (2016), 154-170. doi: 10.1016/j.jmaa.2016.02.036. Google Scholar

[27]

M. Tang, Uniqueness of positive radial solutions for $\Delta u-u+u^p=0$ on an annulus, J. Differential Equations, 189 (2003), 148-160. doi: 10.1016/S0022-0396(02)00142-0. Google Scholar

[28]

W. Troy, The existence and uniqueness of bound state solutions of a semilinear equation, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 461 (2005), 2941-2963. doi: 10.1098/rspa.2005.1482. Google Scholar

[29]

W. Troy, Uniqueness of positive ground state solutions of the logarithmic Schrdinger equation, Arch. Ration. Mech. Anal., 222 (2016), 1581-1600. doi: 10.1007/s00205-016-1028-5. Google Scholar

show all references

References:
[1]

C. C. Chen and C. S. Lin, Uniqueness of the ground state solutions of $\Delta u+f(u) = 0$ in $\mathbb R^N, $ $N\ge 3, $, Comm. in Partial Differential Equations, 16 (1991), 1549-1572. doi: 10.1080/03605309108820811. Google Scholar

[2]

C. V. Coffman, Uniqueness of the ground state solution of $\Delta u-u+u^3 = 0$ and a variational characterization of other solutions, Archive Rat. Mech. Anal., 46 (1972), 81-95. doi: 10.1007/BF00250684. Google Scholar

[3]

C. CortázarP. Felmer and M. Elgueta, On a semilinear elliptic problem in $\mathbb R^N$ with a non Lipschitzian nonlinearity, Advances in Differential Equations, 1 (1996), 199-218. Google Scholar

[4]

C. CortázarP. Felmer and M. Elgueta, Uniqueness of positive solutions of $\Delta u+f(u) = 0$ in $\mathbb R^N$, $N\ge 3$, Archive Rat. Mech. Anal., 142 (1998), 127-141. doi: 10.1007/s002050050086. Google Scholar

[5]

C. Cortázar and M. García-Huidobro, On the uniqueness of ground state solutions of a semilinear equation containing a weighted Laplacian, Comm. Pure. Appl. Anal., 5 (2006), 813-826. doi: 10.3934/cpaa.2006.5.813. Google Scholar

[6]

C. CortázarJ. DolbeaultM. García-Huidobro and R. Manásevich, Existence of sign changing solutions for an equation with a weighted p-Laplace operator, Nonlinear Anal., 110 (2014), 1-22. doi: 10.1016/j.na.2014.07.016. Google Scholar

[7]

C. CortázarM. García-Huidobro and C. Yarur, On the uniqueness of the second bound state solution of a semilinear equation, Annales de l'Institut Henri Poincaré - Analyse non linéaire, 26 (2009), 2091-2110. doi: 10.1016/j.anihpc.2009.01.004. Google Scholar

[8]

C. CortázarM. García-Huidobroand and C. Yarur, On the uniqueness of sign changing bound state solutions of a semilinear equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28 (2011), 599-621. doi: 10.1016/j.anihpc.2011.04.002. Google Scholar

[9]

C. CortázarM. García-Huidobro and C. Yarur, On the existence of sign changing bound state solutions of a quasilinear equation, J. Differential Equations, 254 (2013), 2603-2625. doi: 10.1016/j.jde.2012.12.015. Google Scholar

[10]

L. Erbe and M. Tang, Uniqueness theorems for positive solutions of quasilinear elliptic equations in a ball, J. Diff. Equations, 138 (1997), 351-379. doi: 10.1006/jdeq.1997.3279. Google Scholar

[11]

B. FranchiE. Lanconelli and J. Serrin, Existence and Uniqueness of nonnegative solutions of quasilinear equations in $\mathbb R^n$, Advances in Mathematics, 118 (1996), 177-243. doi: 10.1006/aima.1996.0021. Google Scholar

[12]

M. García-Huidobro and D. Henao, On the uniqueness of positive solutions of a quasilinear equation containing a weighted $p$-Laplacian, Comm. in Contemp. Math., 10 (2008), 405-432. doi: 10.1142/S0219199708002831. Google Scholar

[13]

R. Kajikiya, Necessary and sufficient condition for existence and uniqueness of nodal solutions to sublinear elliptic equations., Adv. Differential Equations, 6 (2001), 1317-1346. Google Scholar

[14]

M. K. Kwong, Uniqueness of positive solutions of $\Delta u-u+u^p = 0$, Archive Rat. Mech. Anal., 105 (1989), 243-266. doi: 10.1007/BF00251502. Google Scholar

[15]

K. McLeod, Uniqueness of positive radial solutions of $\Delta u+f(u) = 0$ in $\mathbb R^N $ ,Ⅱ, Trans. Amer. Math. Soc., 339 (1993), 495-505. Google Scholar

[16]

K. McLeod and J. Serrin, Uniqueness of positive radial solutions of $\Delta u+f(u) = 0$ in $\mathbb R^N $, Arch. Rational Mech. Anal., 99 (1987), 115-145. doi: 10.1007/BF00275874. Google Scholar

[17]

K. McLeodW. C. Troy and F. B. Weissler, Radial solutions of $\Delta u+f(u) = 0$ with prescribed numbers of zeros, J. Differential Equations, 83 (1990), 368-378. doi: 10.1016/0022-0396(90)90063-U. Google Scholar

[18]

L. Peletier and J. Serrin, Uniqueness of positive solutions of quasilinear equations, Archive Rat. Mech. Anal., 81 (1983), 181-197. doi: 10.1007/BF00250651. Google Scholar

[19]

L. Peletier and J. Serrin, Uniqueness of nonnegative solutions of quasilinear equations, J. Diff. Equat., 61 (1986), 380-397. doi: 10.1016/0022-0396(86)90112-9. Google Scholar

[20]

P. Pucci, M. Garca-Huidobro, R. Mansevich and J. Serrin, Qualitative properties of ground states for singular elliptic equations with weights, Ann. Mat. Pura Appl., (4) 185 (2006), S205–S243. doi: 10.1007/s10231-004-0143-3. Google Scholar

[21]

P. R. Pucci and J. Serrin, Uniqueness of ground states for quasilinear elliptic operators, Indiana Univ. Math. J., 47 (1998), 501-528. Google Scholar

[22]

J. Serrin and M. Tang, Uniqueness of ground states for quasilinear elliptic equations, Indiana Univ. Math. J., 49 (2000), 897-923. Google Scholar

[23]

S. Tanaka, On the uniqueness of solutions with prescribed numbers of zeros for a two-point boundary value problem, Differential Integral Equations, 20 (2007), 93-104. Google Scholar

[24]

S. Tanaka, Uniqueness of nodal radial solutions of superlinear elliptic equations in a ball, Proc. Roy. Soc. Edinburgh Sect. A, 138 (2008), 1331-1343. doi: 10.1017/S0308210507000431. Google Scholar

[25]

S. Tanaka, Uniqueness and nonuniqueness of nodal radial solutions of sublinear elliptic equations in a ball, Nonlinear Anal., 71 (2009), 5256-5267. doi: 10.1016/j.na.2009.04.009. Google Scholar

[26]

S. Tanaka, Uniqueness of sign-changing radial solutions for $\Delta u-u+|u|^{p-1}u=0$ in some ball and annulus, J. Math. Anal. Appl., 439 (2016), 154-170. doi: 10.1016/j.jmaa.2016.02.036. Google Scholar

[27]

M. Tang, Uniqueness of positive radial solutions for $\Delta u-u+u^p=0$ on an annulus, J. Differential Equations, 189 (2003), 148-160. doi: 10.1016/S0022-0396(02)00142-0. Google Scholar

[28]

W. Troy, The existence and uniqueness of bound state solutions of a semilinear equation, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 461 (2005), 2941-2963. doi: 10.1098/rspa.2005.1482. Google Scholar

[29]

W. Troy, Uniqueness of positive ground state solutions of the logarithmic Schrdinger equation, Arch. Ration. Mech. Anal., 222 (2016), 1581-1600. doi: 10.1007/s00205-016-1028-5. Google Scholar

[1]

Claudia Anedda, Giovanni Porru. Boundary estimates for solutions of weighted semilinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (11) : 3801-3817. doi: 10.3934/dcds.2012.32.3801

[2]

C. Cortázar, Marta García-Huidobro. On the uniqueness of ground state solutions of a semilinear equation containing a weighted Laplacian. Communications on Pure & Applied Analysis, 2006, 5 (4) : 813-826. doi: 10.3934/cpaa.2006.5.813

[3]

C. Cortázar, Marta García-Huidobro. On the uniqueness of ground state solutions of a semilinear equation containing a weighted Laplacian. Communications on Pure & Applied Analysis, 2006, 5 (1) : 71-84. doi: 10.3934/cpaa.2006.5.71

[4]

Soohyun Bae. Weighted $L^\infty$ stability of positive steady states of a semilinear heat equation in $\R^n$. Discrete & Continuous Dynamical Systems - A, 2010, 26 (3) : 823-837. doi: 10.3934/dcds.2010.26.823

[5]

Guoqing Zhang, Jia-yu Shao, Sanyang Liu. Linking solutions for N-laplace elliptic equations with Hardy-Sobolev operator and indefinite weights. Communications on Pure & Applied Analysis, 2011, 10 (2) : 571-581. doi: 10.3934/cpaa.2011.10.571

[6]

Ruofei Yao, Yi Li, Hongbin Chen. Uniqueness of positive radial solutions of a semilinear elliptic equation in an annulus. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1585-1594. doi: 10.3934/dcds.2018122

[7]

Mei Ming. Weighted elliptic estimates for a mixed boundary system related to the Dirichlet-Neumann operator on a corner domain. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 6039-6067. doi: 10.3934/dcds.2019264

[8]

Peter I. Kogut, Olha P. Kupenko. On optimal control problem for an ill-posed strongly nonlinear elliptic equation with $p$-Laplace operator and $L^1$-type of nonlinearity. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 1273-1295. doi: 10.3934/dcdsb.2019016

[9]

Paolo Caldiroli. Radial and non radial ground states for a class of dilation invariant fourth order semilinear elliptic equations on $R^n$. Communications on Pure & Applied Analysis, 2014, 13 (2) : 811-821. doi: 10.3934/cpaa.2014.13.811

[10]

Tetsu Mizumachi. Instability of bound states for 2D nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 413-428. doi: 10.3934/dcds.2005.13.413

[11]

J. De Beule, K. Metsch, L. Storme. Characterization results on weighted minihypers and on linear codes meeting the Griesmer bound. Advances in Mathematics of Communications, 2008, 2 (3) : 261-272. doi: 10.3934/amc.2008.2.261

[12]

A. M. Micheletti, Angela Pistoia. Multiple eigenvalues of the Laplace-Beltrami operator and deformation of the Riemannian metric. Discrete & Continuous Dynamical Systems - A, 1998, 4 (4) : 709-720. doi: 10.3934/dcds.1998.4.709

[13]

Shingo Takeuchi. Partial flat core properties associated to the $p$-laplace operator. Conference Publications, 2007, 2007 (Special) : 965-973. doi: 10.3934/proc.2007.2007.965

[14]

Micol Amar, Roberto Gianni. Laplace-Beltrami operator for the heat conduction in polymer coating of electronic devices. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1739-1756. doi: 10.3934/dcdsb.2018078

[15]

Alexander Arbieto, Luciano Prudente. Uniqueness of equilibrium states for some partially hyperbolic horseshoes. Discrete & Continuous Dynamical Systems - A, 2012, 32 (1) : 27-40. doi: 10.3934/dcds.2012.32.27

[16]

Jan Boman. A local uniqueness theorem for weighted Radon transforms. Inverse Problems & Imaging, 2010, 4 (4) : 631-637. doi: 10.3934/ipi.2010.4.631

[17]

Philip Korman. On uniqueness of positive solutions for a class of semilinear equations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (4) : 865-871. doi: 10.3934/dcds.2002.8.865

[18]

Xia Huang. Stable weak solutions of weighted nonlinear elliptic equations. Communications on Pure & Applied Analysis, 2014, 13 (1) : 293-305. doi: 10.3934/cpaa.2014.13.293

[19]

Ryuji Kajikiya. Nonradial least energy solutions of the p-Laplace elliptic equations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 547-561. doi: 10.3934/dcds.2018024

[20]

Rafael Ortega, James R. Ward Jr. A semilinear elliptic system with vanishing nonlinearities. Conference Publications, 2003, 2003 (Special) : 688-693. doi: 10.3934/proc.2003.2003.688

2018 Impact Factor: 1.143

Article outline

[Back to Top]