November  2019, 39(11): 6585-6597. doi: 10.3934/dcds.2019286

Almost surely invariance principle for non-stationary and random intermittent dynamical systems

Department of Mathematics, University of Houston, Houston, Texas 77204-3008, USA

Received  January 2019 Revised  May 2019 Published  August 2019

We establish almost sure invariance principles (ASIP), a strong form of approximation by Brownian motion, for non-stationary time series arising as observations on sequential maps possessing an indifferent fixed point. These transformations are obtained by perturbing the slope in the Pomeau-Manneville map. Quenched ASIP for random compositions of these maps is also obtained.

Citation: Yaofeng Su. Almost surely invariance principle for non-stationary and random intermittent dynamical systems. Discrete & Continuous Dynamical Systems - A, 2019, 39 (11) : 6585-6597. doi: 10.3934/dcds.2019286
References:
[1]

R. AiminoH. Y. HuM. NicolA. Török and S. Vaienti, Polynomial loss of memory for maps of the interval with a neutral fixed point, Discrete Contin. Dyn. Syst., 35 (2015), 793-806. doi: 10.3934/dcds.2015.35.793. Google Scholar

[2]

C. Cuny and F. Merlevède, Strong invariance principles with rate for "reverse" martingale differences and applications, J. Theoret. Probab., 28 (2015), 137-183. doi: 10.1007/s10959-013-0506-z. Google Scholar

[3]

D. DragičevićG. FroylandC. González-Tokman and S. Vaienti, Almost sure invariance principle for random piecewise expanding maps, Nonlinearity, 31 (2018), 2252-2280. doi: 10.1088/1361-6544/aaaf4b. Google Scholar

[4]

N. HaydnM. NicolA. Török and S. Vaienti, Almost sure invariance principle for sequential and non-stationary dynamical systems, Trans. Amer. Math. Soc., 369 (2017), 5293-5316. doi: 10.1090/tran/6812. Google Scholar

[5]

O. Hella and J. Leppänen, Central limit theorems with a rate of convergence for time-dependent intermittent maps, arXiv E-Prints, arXiv: 1811.11170.Google Scholar

[6]

M. NicolA. Török and S. Vaienti, Central limit theorems for sequential and random intermittent dynamical systems, Ergodic Theory Dynam. Systems, 38 (2018), 1127-1153. doi: 10.1017/etds.2016.69. Google Scholar

[7]

D. J. Scott and R. M. Huggins, On the embedding of processes in Brownian motion and the law of the iterated logarithm for reverse martingales, Bull. Austral. Math. Soc., 27 (1983), 443-459. doi: 10.1017/S0004972700025946. Google Scholar

[8]

V. G. Sprindžuk, Metric Theory of Diophantine Approximations, Translated from the Russian and edited by Richard A. Silverman, With a foreword by Donald J. Newman, Scripta Series in Mathematics. V. H. Winston & Sons, Washington, D. C., A Halsted Press Book, John Wiley & Sons, New York-Toronto, Ont.-London, 1979. Google Scholar

show all references

References:
[1]

R. AiminoH. Y. HuM. NicolA. Török and S. Vaienti, Polynomial loss of memory for maps of the interval with a neutral fixed point, Discrete Contin. Dyn. Syst., 35 (2015), 793-806. doi: 10.3934/dcds.2015.35.793. Google Scholar

[2]

C. Cuny and F. Merlevède, Strong invariance principles with rate for "reverse" martingale differences and applications, J. Theoret. Probab., 28 (2015), 137-183. doi: 10.1007/s10959-013-0506-z. Google Scholar

[3]

D. DragičevićG. FroylandC. González-Tokman and S. Vaienti, Almost sure invariance principle for random piecewise expanding maps, Nonlinearity, 31 (2018), 2252-2280. doi: 10.1088/1361-6544/aaaf4b. Google Scholar

[4]

N. HaydnM. NicolA. Török and S. Vaienti, Almost sure invariance principle for sequential and non-stationary dynamical systems, Trans. Amer. Math. Soc., 369 (2017), 5293-5316. doi: 10.1090/tran/6812. Google Scholar

[5]

O. Hella and J. Leppänen, Central limit theorems with a rate of convergence for time-dependent intermittent maps, arXiv E-Prints, arXiv: 1811.11170.Google Scholar

[6]

M. NicolA. Török and S. Vaienti, Central limit theorems for sequential and random intermittent dynamical systems, Ergodic Theory Dynam. Systems, 38 (2018), 1127-1153. doi: 10.1017/etds.2016.69. Google Scholar

[7]

D. J. Scott and R. M. Huggins, On the embedding of processes in Brownian motion and the law of the iterated logarithm for reverse martingales, Bull. Austral. Math. Soc., 27 (1983), 443-459. doi: 10.1017/S0004972700025946. Google Scholar

[8]

V. G. Sprindžuk, Metric Theory of Diophantine Approximations, Translated from the Russian and edited by Richard A. Silverman, With a foreword by Donald J. Newman, Scripta Series in Mathematics. V. H. Winston & Sons, Washington, D. C., A Halsted Press Book, John Wiley & Sons, New York-Toronto, Ont.-London, 1979. Google Scholar

[1]

Romain Aimino, Huyi Hu, Matthew Nicol, Andrei Török, Sandro Vaienti. Polynomial loss of memory for maps of the interval with a neutral fixed point. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 793-806. doi: 10.3934/dcds.2015.35.793

[2]

Fredi Tröltzsch, Alberto Valli. Optimal voltage control of non-stationary eddy current problems. Mathematical Control & Related Fields, 2018, 8 (1) : 35-56. doi: 10.3934/mcrf.2018002

[3]

Hi Jun Choe, Do Wan Kim, Yongsik Kim. Meshfree method for the non-stationary incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 17-39. doi: 10.3934/dcdsb.2006.6.17

[4]

Yakov Krasnov, Alexander Kononovich, Grigory Osharovich. On a structure of the fixed point set of homogeneous maps. Discrete & Continuous Dynamical Systems - S, 2013, 6 (4) : 1017-1027. doi: 10.3934/dcdss.2013.6.1017

[5]

Luis Hernández-Corbato, Francisco R. Ruiz del Portal. Fixed point indices of planar continuous maps. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 2979-2995. doi: 10.3934/dcds.2015.35.2979

[6]

Chunhong Li, Jiaowan Luo. Stochastic invariance for neutral functional differential equation with non-lipschitz coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3299-3318. doi: 10.3934/dcdsb.2018321

[7]

Kaïs Ammari, Thomas Duyckaerts, Armen Shirikyan. Local feedback stabilisation to a non-stationary solution for a damped non-linear wave equation. Mathematical Control & Related Fields, 2016, 6 (1) : 1-25. doi: 10.3934/mcrf.2016.6.1

[8]

Teck-Cheong Lim. On the largest common fixed point of a commuting family of isotone maps. Conference Publications, 2005, 2005 (Special) : 621-623. doi: 10.3934/proc.2005.2005.621

[9]

Grzegorz Graff, Piotr Nowak-Przygodzki. Fixed point indices of iterations of $C^1$ maps in $R^3$. Discrete & Continuous Dynamical Systems - A, 2006, 16 (4) : 843-856. doi: 10.3934/dcds.2006.16.843

[10]

Yinnian He, Yanping Lin, Weiwei Sun. Stabilized finite element method for the non-stationary Navier-Stokes problem. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 41-68. doi: 10.3934/dcdsb.2006.6.41

[11]

Zhendong Luo. A reduced-order SMFVE extrapolation algorithm based on POD technique and CN method for the non-stationary Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2015, 20 (4) : 1189-1212. doi: 10.3934/dcdsb.2015.20.1189

[12]

Zvi Artstein. Invariance principle in the singular perturbations limit. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3653-3666. doi: 10.3934/dcdsb.2018309

[13]

Manuela Giampieri, Stefano Isola. A one-parameter family of analytic Markov maps with an intermittency transition. Discrete & Continuous Dynamical Systems - A, 2005, 12 (1) : 115-136. doi: 10.3934/dcds.2005.12.115

[14]

Francesco Paparella, Alessandro Portaluri. Geometry of stationary solutions for a system of vortex filaments: A dynamical approach. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 3011-3042. doi: 10.3934/dcds.2013.33.3011

[15]

Nicholas Long. Fixed point shifts of inert involutions. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1297-1317. doi: 10.3934/dcds.2009.25.1297

[16]

Jorge Groisman. Expansive and fixed point free homeomorphisms of the plane. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1709-1721. doi: 10.3934/dcds.2012.32.1709

[17]

Shui-Hung Hou. On an application of fixed point theorem to nonlinear inclusions. Conference Publications, 2011, 2011 (Special) : 692-697. doi: 10.3934/proc.2011.2011.692

[18]

Antonio Garcia. Transition tori near an elliptic-fixed point. Discrete & Continuous Dynamical Systems - A, 2000, 6 (2) : 381-392. doi: 10.3934/dcds.2000.6.381

[19]

Yong Ji, Ercai Chen, Yunping Wang, Cao Zhao. Bowen entropy for fixed-point free flows. Discrete & Continuous Dynamical Systems - A, 2019, 39 (11) : 6231-6239. doi: 10.3934/dcds.2019271

[20]

Michael Blank. Finite rank approximations of expanding maps with neutral singularities. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 749-762. doi: 10.3934/dcds.2008.21.749

2018 Impact Factor: 1.143

Article outline

[Back to Top]