• Previous Article
    Polynomial integrals of magnetic geodesic flows on the 2-torus on several energy levels
  • DCDS Home
  • This Issue
  • Next Article
    Positive ground state solutions for fractional Laplacian system with one critical exponent and one subcritical exponent
November  2019, 39(11): 6541-6564. doi: 10.3934/dcds.2019284

Moduli of stability for heteroclinic cycles of periodic solutions

1. 

Centro de Matemática da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal

2. 

Fachbereich Mathematik, Universität Hamburg, Bundesstraße 55, 20146 Hamburg, Germany

Received  January 2019 Revised  June 2019 Published  August 2019

We consider $ C^2 $ vector fields in the three dimensional sphere with an attracting heteroclinic cycle between two periodic hyperbolic solutions with real Floquet multipliers. The proper basin of this attracting set exhibits historic behavior and from the asymptotic properties of its orbits we obtain a complete set of invariants under topological conjugacy in a neighborhood of the cycle. As expected, this set contains the periods of the orbits involved in the cycle, a combination of their angular speeds, the rates of expansion and contraction in linearizing neighborhoods of them, besides information regarding the transition maps and the transition times between these neighborhoods. We conclude with an application of this result to a class of cycles obtained by the lifting of an example of R. Bowen.

Citation: Maria Carvalho, Alexander Lohse, Alexandre A. P. Rodrigues. Moduli of stability for heteroclinic cycles of periodic solutions. Discrete & Continuous Dynamical Systems - A, 2019, 39 (11) : 6541-6564. doi: 10.3934/dcds.2019284
References:
[1]

M. A. D. AguiarS. B. S. D. Castro and I. S. Labouriau, Simple vector fields with complex behavior, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 16 (2006), 369-381. doi: 10.1142/S021812740601485X. Google Scholar

[2]

V. Arnold, V. Afraimovich, Y. Ilyashenko and L. P. Shilnikov, Bifurcation Theory and Catastrophe Theory, Encyclopaedia of Mathematical Sciences, 5. V. I. Arnold (ed.), Springer-Verlag, Berlin, 1994. Google Scholar

[3]

J. A. Beloqui, Modulus of stability for vector fields on 3-manifolds, J. Differential Equations, 65 (1986), 374-395. doi: 10.1016/0022-0396(86)90025-2. Google Scholar

[4]

C. Bonatti and E. Dufraine, Éuivalence topologique de connexions de selles en dimension 3, (French) [Topological equivalence of connections between 3-dimensional saddles], Ergodic Theory Dynam. Systems, 23 (2003), 1347-1381. doi: 10.1017/S0143385703000130. Google Scholar

[5]

M. Carvalho and A. P. Rodrigues, Complete set of invariants for a Bykov attractor, Regul. Chaotic. Dyn., 23 (2018), 227-247. doi: 10.1134/S1560354718030012. Google Scholar

[6]

P. ChossatM. Golubitsky and B. L. Keyfitz, Hopf-Hopf mode interactions with O(2) symmetry, Dynam. Stability Systems, 1 (1986), 255-292. doi: 10.1080/02681118608806019. Google Scholar

[7]

E. Dufraine, Some topological invariants for three-dimensional flows, Chaos, 11 (2011), 443-448. doi: 10.1063/1.1385918. Google Scholar

[8]

M. J. Field, Equivariant dynamical systems, Trans. Amer. Math. Soc., 259 (1980), 185-205. doi: 10.1090/S0002-9947-1980-0561832-4. Google Scholar

[9]

M. Krupa and I. Melbourne, Asymptotic stability of heteroclinic cycles in systems with symmetry, Ergodic Theory Dynam. Systems, 15 (1995), 121-147. doi: 10.1017/S0143385700008270. Google Scholar

[10]

M. Krupa and I. Melbourne, Asymptotic stability of heteroclinic cycles in systems with symmetry. II, Proc. Roy. Soc. Edinburg Sect. A, 134 (2004), 1177-1197. doi: 10.1017/S0308210500003693. Google Scholar

[11]

I. S. Labouriau and A. A. P. Rodrigues, Dense heteroclinic tangencies near a Bykov cycle, J. Differential Equations, 259 (2015), 5875-5902. doi: 10.1016/j.jde.2015.07.017. Google Scholar

[12]

I. S. Labouriau and A. A. P. Rodrigues, On Takens' last problem: Tangencies and time averages near heteroclinic networks, Nonlinearity, 30 (2017), 1876-1910. doi: 10.1088/1361-6544/aa64e9. Google Scholar

[13]

I. Melbourne, Intermittency as a codimension-three phenomenon, J. Dynam. Differential Equations, 1 (1989), 347-367. doi: 10.1007/BF01048454. Google Scholar

[14]

J. Palis, A differentiable invariant of topological conjugacies and moduli of stability, Astérisque, 51 (1987), 335-346. Google Scholar

[15]

A. A. P. Rodrigues, Moduli for heteroclinic connections involving Saddle-Foci and periodic solutions, Discrete Continuous Dynam. Systems, 35 (2015), 3155-3182. doi: 10.3934/dcds.2015.35.3155. Google Scholar

[16]

A. A. P. RodriguesI. S. Labouriau and M. A. D. Aguiar, Chaotic double cycling, Dynamical Systems: An International Journal., 26 (2011), 199-233. doi: 10.1080/14689367.2011.557179. Google Scholar

[17]

D. Ruelle, Historic behaviour in smooth dynamical systems, Global Analysis of Dynamical Systems, Institute of Physics Publishing, Bristol, (2001), 63–66. Google Scholar

[18]

A. Susín and C. Simó, On moduli of conjugation for some n-dimensional vector fields, J. Differential Equations, 79 (1989), 168-177. doi: 10.1016/0022-0396(89)90118-6. Google Scholar

[19]

F. Takens, Partially hyperbolic fixed points, Topology, 10 (1971), 133-147. doi: 10.1016/0040-9383(71)90035-8. Google Scholar

[20]

F. Takens, Heteroclinic attractors: Time averages and moduli of topological conjugacy, Bol. Soc. Brasil. Mat. (N.S.), 25 (1994), 107-120. doi: 10.1007/BF01232938. Google Scholar

[21]

Y. Togawa, A modulus of 3-dimensional vector fields, Ergodic Theory Dynam. Systems, 7 (1987), 295-301. doi: 10.1017/S0143385700004028. Google Scholar

[22]

W. J. ZhangB. Krauskopf and V. Kirk, How to find a codimension-one heteroclinic cycle between two periodic orbits, Discrete Continuous Dynam. Systems, 32 (2012), 2825-2851. doi: 10.3934/dcds.2012.32.2825. Google Scholar

show all references

References:
[1]

M. A. D. AguiarS. B. S. D. Castro and I. S. Labouriau, Simple vector fields with complex behavior, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 16 (2006), 369-381. doi: 10.1142/S021812740601485X. Google Scholar

[2]

V. Arnold, V. Afraimovich, Y. Ilyashenko and L. P. Shilnikov, Bifurcation Theory and Catastrophe Theory, Encyclopaedia of Mathematical Sciences, 5. V. I. Arnold (ed.), Springer-Verlag, Berlin, 1994. Google Scholar

[3]

J. A. Beloqui, Modulus of stability for vector fields on 3-manifolds, J. Differential Equations, 65 (1986), 374-395. doi: 10.1016/0022-0396(86)90025-2. Google Scholar

[4]

C. Bonatti and E. Dufraine, Éuivalence topologique de connexions de selles en dimension 3, (French) [Topological equivalence of connections between 3-dimensional saddles], Ergodic Theory Dynam. Systems, 23 (2003), 1347-1381. doi: 10.1017/S0143385703000130. Google Scholar

[5]

M. Carvalho and A. P. Rodrigues, Complete set of invariants for a Bykov attractor, Regul. Chaotic. Dyn., 23 (2018), 227-247. doi: 10.1134/S1560354718030012. Google Scholar

[6]

P. ChossatM. Golubitsky and B. L. Keyfitz, Hopf-Hopf mode interactions with O(2) symmetry, Dynam. Stability Systems, 1 (1986), 255-292. doi: 10.1080/02681118608806019. Google Scholar

[7]

E. Dufraine, Some topological invariants for three-dimensional flows, Chaos, 11 (2011), 443-448. doi: 10.1063/1.1385918. Google Scholar

[8]

M. J. Field, Equivariant dynamical systems, Trans. Amer. Math. Soc., 259 (1980), 185-205. doi: 10.1090/S0002-9947-1980-0561832-4. Google Scholar

[9]

M. Krupa and I. Melbourne, Asymptotic stability of heteroclinic cycles in systems with symmetry, Ergodic Theory Dynam. Systems, 15 (1995), 121-147. doi: 10.1017/S0143385700008270. Google Scholar

[10]

M. Krupa and I. Melbourne, Asymptotic stability of heteroclinic cycles in systems with symmetry. II, Proc. Roy. Soc. Edinburg Sect. A, 134 (2004), 1177-1197. doi: 10.1017/S0308210500003693. Google Scholar

[11]

I. S. Labouriau and A. A. P. Rodrigues, Dense heteroclinic tangencies near a Bykov cycle, J. Differential Equations, 259 (2015), 5875-5902. doi: 10.1016/j.jde.2015.07.017. Google Scholar

[12]

I. S. Labouriau and A. A. P. Rodrigues, On Takens' last problem: Tangencies and time averages near heteroclinic networks, Nonlinearity, 30 (2017), 1876-1910. doi: 10.1088/1361-6544/aa64e9. Google Scholar

[13]

I. Melbourne, Intermittency as a codimension-three phenomenon, J. Dynam. Differential Equations, 1 (1989), 347-367. doi: 10.1007/BF01048454. Google Scholar

[14]

J. Palis, A differentiable invariant of topological conjugacies and moduli of stability, Astérisque, 51 (1987), 335-346. Google Scholar

[15]

A. A. P. Rodrigues, Moduli for heteroclinic connections involving Saddle-Foci and periodic solutions, Discrete Continuous Dynam. Systems, 35 (2015), 3155-3182. doi: 10.3934/dcds.2015.35.3155. Google Scholar

[16]

A. A. P. RodriguesI. S. Labouriau and M. A. D. Aguiar, Chaotic double cycling, Dynamical Systems: An International Journal., 26 (2011), 199-233. doi: 10.1080/14689367.2011.557179. Google Scholar

[17]

D. Ruelle, Historic behaviour in smooth dynamical systems, Global Analysis of Dynamical Systems, Institute of Physics Publishing, Bristol, (2001), 63–66. Google Scholar

[18]

A. Susín and C. Simó, On moduli of conjugation for some n-dimensional vector fields, J. Differential Equations, 79 (1989), 168-177. doi: 10.1016/0022-0396(89)90118-6. Google Scholar

[19]

F. Takens, Partially hyperbolic fixed points, Topology, 10 (1971), 133-147. doi: 10.1016/0040-9383(71)90035-8. Google Scholar

[20]

F. Takens, Heteroclinic attractors: Time averages and moduli of topological conjugacy, Bol. Soc. Brasil. Mat. (N.S.), 25 (1994), 107-120. doi: 10.1007/BF01232938. Google Scholar

[21]

Y. Togawa, A modulus of 3-dimensional vector fields, Ergodic Theory Dynam. Systems, 7 (1987), 295-301. doi: 10.1017/S0143385700004028. Google Scholar

[22]

W. J. ZhangB. Krauskopf and V. Kirk, How to find a codimension-one heteroclinic cycle between two periodic orbits, Discrete Continuous Dynam. Systems, 32 (2012), 2825-2851. doi: 10.3934/dcds.2012.32.2825. Google Scholar

Figure 1.  Local data near a periodic solution $ {\mathcal C} $
Figure 2.  Linear components of the global maps
Figure 3.  Scheme for the global transition
Figure 4.  Phase diagram of (23)
Figure 5.  Bowen's example (24) with $ \varepsilon>0 $
Figure 6.  Illustration of the properties that are conveyed from (25) to its lifting (26)
[1]

Shin Kiriki, Ming-Chia Li, Teruhiko Soma. Geometric Lorenz flows with historic behavior. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 7021-7028. doi: 10.3934/dcds.2016105

[2]

Kingshook Biswas. Complete conjugacy invariants of nonlinearizable holomorphic dynamics. Discrete & Continuous Dynamical Systems - A, 2010, 26 (3) : 847-856. doi: 10.3934/dcds.2010.26.847

[3]

Yu-Hsien Chang, Guo-Chin Jau. The behavior of the solution for a mathematical model for analysis of the cell cycle. Communications on Pure & Applied Analysis, 2006, 5 (4) : 779-792. doi: 10.3934/cpaa.2006.5.779

[4]

Wenjun Zhang, Bernd Krauskopf, Vivien Kirk. How to find a codimension-one heteroclinic cycle between two periodic orbits. Discrete & Continuous Dynamical Systems - A, 2012, 32 (8) : 2825-2851. doi: 10.3934/dcds.2012.32.2825

[5]

Jihua Yang, Erli Zhang, Mei Liu. Limit cycle bifurcations of a piecewise smooth Hamiltonian system with a generalized heteroclinic loop through a cusp. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2321-2336. doi: 10.3934/cpaa.2017114

[6]

Daniele Bartoli, Alexander A. Davydov, Stefano Marcugini, Fernanda Pambianco. A 3-cycle construction of complete arcs sharing $(q+3)/2$ points with a conic. Advances in Mathematics of Communications, 2013, 7 (3) : 319-334. doi: 10.3934/amc.2013.7.319

[7]

Michel Chipot, Karen Yeressian. On the asymptotic behavior of variational inequalities set in cylinders. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 4875-4890. doi: 10.3934/dcds.2013.33.4875

[8]

Yun Li, Fuke Wu, George Yin. Asymptotic behavior of gene expression with complete memory and two-time scales based on the chemical Langevin equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4417-4443. doi: 10.3934/dcdsb.2019125

[9]

Yoshikazu Giga, Hiroyoshi Mitake, Hung V. Tran. Remarks on large time behavior of level-set mean curvature flow equations with driving and source terms. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019228

[10]

André de Carvalho, Toby Hall. Decoration invariants for horseshoe braids. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 863-906. doi: 10.3934/dcds.2010.27.863

[11]

Dmitry N. Kozlov. Cobounding odd cycle colorings. Electronic Research Announcements, 2006, 12: 53-55.

[12]

Sobhan Seyfaddini. Spectral killers and Poisson bracket invariants. Journal of Modern Dynamics, 2015, 9: 51-66. doi: 10.3934/jmd.2015.9.51

[13]

Rémi Leclercq. Spectral invariants in Lagrangian Floer theory. Journal of Modern Dynamics, 2008, 2 (2) : 249-286. doi: 10.3934/jmd.2008.2.249

[14]

BronisŁaw Jakubczyk, Wojciech Kryński. Vector fields with distributions and invariants of ODEs. Journal of Geometric Mechanics, 2013, 5 (1) : 85-129. doi: 10.3934/jgm.2013.5.85

[15]

Yong Fang. Thermodynamic invariants of Anosov flows and rigidity. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1185-1204. doi: 10.3934/dcds.2009.24.1185

[16]

Konovenko Nadiia, Lychagin Valentin. Möbius invariants in image recognition. Journal of Geometric Mechanics, 2017, 9 (2) : 191-206. doi: 10.3934/jgm.2017008

[17]

Wenxiong Chen, Congming Li. Harmonic maps on complete manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (4) : 799-804. doi: 10.3934/dcds.1999.5.799

[18]

Paula Kemp. Fixed points and complete lattices. Conference Publications, 2007, 2007 (Special) : 568-572. doi: 10.3934/proc.2007.2007.568

[19]

Flaviano Battelli, Ken Palmer. Heteroclinic connections in singularly perturbed systems. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 431-461. doi: 10.3934/dcdsb.2008.9.431

[20]

Claudio Qureshi, Daniel Panario, Rodrigo Martins. Cycle structure of iterating Redei functions. Advances in Mathematics of Communications, 2017, 11 (2) : 397-407. doi: 10.3934/amc.2017034

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (38)
  • HTML views (60)
  • Cited by (0)

[Back to Top]