doi: 10.3934/dcds.2019239

Recent progresses on elliptic two-phase free boundary problems

1. 

Department of Mathematics, Barnard College, Columbia University, New York, NY 10027, USA

2. 

Dipartimento di Matematica dell'Università di Bologna, Piazza di Porta S. Donato, 5, 40126 Bologna, Italy

3. 

Dipartimento di Matematica del Politecnico di Milano, Leonardo da Vinci, 32, 20133 Milano, Italy

* Corresponding author: Sandro Salsa

To Luis, with friendship and admiration

Received  October 2018 Revised  November 2018 Published  June 2019

Fund Project: D. D. is partially supported by the Tow Award. F. F. is partially supported by: INDAM-GNAMPA 2017-Regolarità delle soluzioni viscose per equazioni a derivate parziali non lineari degeneri, INDAM-GNAMPA 2018-Costanti critiche e problemi asintotici per equazioni completamente non lineari

We provide an overview of some recent results about the regularity of the solution and the free boundary for so-called two-phase free boundary problems driven by uniformly elliptic equations.

Citation: Daniela De Silva, Fausto Ferrari, Sandro Salsa. Recent progresses on elliptic two-phase free boundary problems. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2019239
References:
[1]

S. AgmonA. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. Ⅰ, Comm. Pure Appl. Math., 12 (1959), 623-727. doi: 10.1002/cpa.3160120405.

[2]

H. W. Alt and L. Caffarelli, Existence and regularity for a minimum problem with free boundary, J. Reine und Angew. Math., 331 (1982), 105-144.

[3]

H. W. AltL. Caffarelli and A. Friedman, Variational problems with two phases and their free boundaries, Trans. Amer. Math. Soc., 282 (1984), 431-461. doi: 10.1090/S0002-9947-1984-0732100-6.

[4]

M. D. Amaral and E. V. Teixeira, Free transmission problems, Comm. Math. Phys., 337 (2015), 1465-1489. doi: 10.1007/s00220-015-2290-3.

[5]

C. J AmickL. E. Fraenkel and J. F. Toland, On the Stokes conjecture for the wave of extreme form, Acta Math., 148 (1982), 193-214. doi: 10.1007/BF02392728.

[6]

R. Argiolas and F. Ferrari, Flat free boundaries regularity in two-phase problems for a class of fully nonlinear elliptic operators with variable coefficients, Interfaces Free Bound., 11 (2009), 177-199. doi: 10.4171/IFB/208.

[7]

G. K. Batchelor, On steady laminar flow with closed streamlines at large Reynolds number, J. Fluid. Mech., 1 (1956), 177-190. doi: 10.1017/S0022112056000123.

[8]

L. Caffarelli, A Harnack inequality approach to the regularity of free boundaries, Part $1$: Lipschitz free boundaries are $C_{\alpha }^{1}$, Rev. Mat. Iberoamericana, 3 (1987), 139-162. doi: 10.4171/RMI/47.

[9]

L. Caffarelli, A Harnack inequality approach to the regularity of free boundaries. Ⅱ. Flat free boundaries are Lipschitz, Comm. Pure Appl. Math., 42 (1989), 55-78. doi: 10.1002/cpa.3160420105.

[10]

L. Caffarelli, A Harnack inequality approach to the regularity of free boundaries, Part Ⅲ: Existence theory, compactness and dependence on $X$, Ann. Sc. Norm. Sup. Pisa Cl. SC. (4), 15 (1988), 383-602.

[11]

L. A. CaffarelliD. De Silva and O. Savin, Two-phase anisotropic free boundary problems and applications to the Bellman equation in 2D, Arch. Ration. Mech. Anal., 228 (2018), 477-493. doi: 10.1007/s00205-017-1198-9.

[12]

L. Caffarelli and S. Salsa, A Geometric Approach to Free Boundary Problems, Graduate Studies in Mathematics, 68, American Mathematical Society, Providence, RI, 2005. doi: 10.1090/gsm/068.

[13]

L. CaffarelliD. Jerison and C. Kenig, Some new monotonicity theorems with applications to free boundary problems, Ann. of Math., 155 (2002), 369-404. doi: 10.2307/3062121.

[14]

M. C. CeruttiF. Ferrari and S. Salsa, Two-phase problems for linear elliptic operators with variable coefficients: Lipschitz free boundaries are $C^{1,\gamma}$, Arch. Rational Mech. Anal., 171 (2004), 329-348. doi: 10.1007/s00205-003-0290-5.

[15]

D. De Silva, Free boundary regularity for a problem with right hand side, Interfaces Free Bound., 13 (2011), 223-238. doi: 10.4171/IFB/255.

[16]

D. De SilvaF. Ferrari and S. Salsa, Two-phase problems with distributed sources: Regularity of the free boundary, Anal. PDE, 7 (2014), 267-310. doi: 10.2140/apde.2014.7.267.

[17]

D. De SilvaF. Ferrari and S. Salsa, Free boundary regularity for fully nonlinear non-homogeneous two-phase problems, J. Math. Pures Appl., 103 (2015), 658-694. doi: 10.1016/j.matpur.2014.07.006.

[18]

D. De SilvaF. Ferrari and S. Salsa, Perron's solutions for two-phase free boundary problems with distributed sources, Nonlinear Anal., 121 (2015), 382-402. doi: 10.1016/j.na.2015.02.013.

[19]

D. De SilvaF. Ferrari and S. Salsa, Regularity of higher order in two-phase free boundary problems, Trans. Amer. Math. Soc., 371 (2019), 3691-3720. doi: 10.1090/tran/7550.

[20]

D., F. Ferrari and S. Salsa, On the regularity of transmission problems for uniformly elliptic fully nonlinear equations, Two Nonlinear Days in Urbino 2017. Electron. J. Diff. Eqns., Conf., 25 (2018), 55–63.

[21]

D. De Silva and D. Jerison, A singular energy minimizing free boundary, J. Reine Angew. Math., 635 (2009), 1-22. doi: 10.1515/CRELLE.2009.074.

[22]

D. De Silva and O. Savin, Lipschitz regularity of solutions to two-phase free boundary problems, Int. Math. Res. Notices., Volume 2019, 7, 2204–2222. doi: 10.1093/imrn/rnx194.

[23]

D. De Silva and O. Savin, Global solutions to nonlinear two-phase free boundary problems, to appear in Comm. Pure Appl. Math. doi: 10.1002/cpa.21811.

[24]

M. Engelstein, A two phase free boundary problem for the harmonic measure, Ann. Sci. Éc. Norm. Supér. (4), 49 (2016), 859–905. doi: 10.24033/asens.2297.

[25]

M. Engelstein, L. Spolaor and B. Velichkov, Uniqueness of the blow-up at isolated singularities for the Alt-Caffarelli functional, arXiv: 1801.09276.

[26]

F. Ferrari, Two-phase problems for a class of fully nonlinear elliptic operators. Lipschitz free boundaries are $C^{1,\gamma}$, Amer. J. Math., 128 (2006), 541-571. doi: 10.1353/ajm.2006.0023.

[27]

F. Ferrari and S. Salsa, Regularity of the free boundary in two-phase problems for linear elliptic operators, Adv. Math., 214 (2007), 288-322. doi: 10.1016/j.aim.2007.02.004.

[28]

M. Feldman, Regularity for nonisotropic two-phase problems with Lipschitz free boundaries, Differential Integral Equations, 10 (1997), 1171-1179.

[29]

M. Feldman, Regularity of Lipschitz free boundaries in two-phase problems for fully nonlinear elliptic equations, Indiana Univ. Math. J., 50 (2001), 1171-1200. doi: 10.1512/iumj.2001.50.1921.

[30]

D. KinderlehrerL. Nirenberg and J. Spruck, Regularity in elliptic free-boundary problems Ⅰ, J. Analyse Math., 34 (1978), 86-119. doi: 10.1007/BF02790009.

[31]

H. Koch, Classical solutions to phase transition problems are smooth, Comm. Partial Differential Equations, 23 (1998), 389-437. doi: 10.1080/03605309808821351.

[32]

D. Kriventsov and F. Lin, Regularity for shape optimizers: The nondegenerate case, Comm. Pure Appl. Math., 71 (2018), 1535-1596. doi: 10.1002/cpa.21743.

[33]

C. Lederman and N. Wolanski, A two phase elliptic singular perturbation problem with a forcing term, J. Math. Pures Appl., 86 (2006), 552-589. doi: 10.1016/j.matpur.2006.10.008.

[34]

G. Lu and P. Wang, On the uniqueness of a solution of a two phase free boundary problem, J. Funct. Anal., 258 (2010), 2817-2833. doi: 10.1016/j.jfa.2009.08.008.

[35]

C. B. Morrey, Jr., Multiple Integrals in the Calculus of Variations, Reprint of the 1966 edition Classics in Mathematics, Springer-Verlag, Berlin, 2008. doi: 10.1007/978-3-540-69952-1.

[36]

N. Matevosyan and A. Petrosyan, Almost monotonicity formulas for elliptic and parabolic operators with variable coefficients, Comm. Pure Appl. Math., 64 (2011), 271-311. doi: 10.1002/cpa.20349.

[37]

E. V. Teixeira, A variational treatment for general elliptic equations of the flame propagation type: Regularity of the free boundary, Ann. Inst. H. Poincare Anal. Non Lineaire, 25 (2008), 633-658. doi: 10.1016/j.anihpc.2007.02.006.

[38]

E. V. Teixeira and L. Zhang, Monotonicity theorems for Laplace Beltrami operator on Riemannian manifolds, Adv. Math., 226 (2011), 1259-1284. doi: 10.1016/j.aim.2010.08.006.

[39]

S. SalsaF. Tulone and G. Verzini, Existence of viscosity solutions to two-phase problems for fully nonlinear equations with distributed sources, Mathematics in Engineering, 1 (2018), 147-173. doi: 10.3934/Mine.2018.1.147.

[40]

P. Y. Wang, Regularity of free boundaries of two-phase problems for fully nonlinear elliptic equations of second order. Ⅰ. Lipschitz free boundaries are $C^{1,\alpha}$, Comm. Pure Appl. Math., 53 (2000), 799-810. doi: 10.1002/(SICI)1097-0312(200007)53:7<799::AID-CPA1>3.0.CO;2-Q.

[41]

P. Y. Wang, Regularity of free boundaries of two-phase problems for fully nonlinear elliptic equations of second order. Ⅱ. Flat free boundaries are Lipschitz, Comm. in Partial Differential Equations, 27 (2002), 1497-1514. doi: 10.1081/PDE-120005846.

[42]

P. Y. Wang, Existence of solutions of two-phase free boundary for fully non linear equations of second order, J. of Geometric Analysis, (2002), 1497–1514. doi: 10.1007/BF02921886.

show all references

References:
[1]

S. AgmonA. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. Ⅰ, Comm. Pure Appl. Math., 12 (1959), 623-727. doi: 10.1002/cpa.3160120405.

[2]

H. W. Alt and L. Caffarelli, Existence and regularity for a minimum problem with free boundary, J. Reine und Angew. Math., 331 (1982), 105-144.

[3]

H. W. AltL. Caffarelli and A. Friedman, Variational problems with two phases and their free boundaries, Trans. Amer. Math. Soc., 282 (1984), 431-461. doi: 10.1090/S0002-9947-1984-0732100-6.

[4]

M. D. Amaral and E. V. Teixeira, Free transmission problems, Comm. Math. Phys., 337 (2015), 1465-1489. doi: 10.1007/s00220-015-2290-3.

[5]

C. J AmickL. E. Fraenkel and J. F. Toland, On the Stokes conjecture for the wave of extreme form, Acta Math., 148 (1982), 193-214. doi: 10.1007/BF02392728.

[6]

R. Argiolas and F. Ferrari, Flat free boundaries regularity in two-phase problems for a class of fully nonlinear elliptic operators with variable coefficients, Interfaces Free Bound., 11 (2009), 177-199. doi: 10.4171/IFB/208.

[7]

G. K. Batchelor, On steady laminar flow with closed streamlines at large Reynolds number, J. Fluid. Mech., 1 (1956), 177-190. doi: 10.1017/S0022112056000123.

[8]

L. Caffarelli, A Harnack inequality approach to the regularity of free boundaries, Part $1$: Lipschitz free boundaries are $C_{\alpha }^{1}$, Rev. Mat. Iberoamericana, 3 (1987), 139-162. doi: 10.4171/RMI/47.

[9]

L. Caffarelli, A Harnack inequality approach to the regularity of free boundaries. Ⅱ. Flat free boundaries are Lipschitz, Comm. Pure Appl. Math., 42 (1989), 55-78. doi: 10.1002/cpa.3160420105.

[10]

L. Caffarelli, A Harnack inequality approach to the regularity of free boundaries, Part Ⅲ: Existence theory, compactness and dependence on $X$, Ann. Sc. Norm. Sup. Pisa Cl. SC. (4), 15 (1988), 383-602.

[11]

L. A. CaffarelliD. De Silva and O. Savin, Two-phase anisotropic free boundary problems and applications to the Bellman equation in 2D, Arch. Ration. Mech. Anal., 228 (2018), 477-493. doi: 10.1007/s00205-017-1198-9.

[12]

L. Caffarelli and S. Salsa, A Geometric Approach to Free Boundary Problems, Graduate Studies in Mathematics, 68, American Mathematical Society, Providence, RI, 2005. doi: 10.1090/gsm/068.

[13]

L. CaffarelliD. Jerison and C. Kenig, Some new monotonicity theorems with applications to free boundary problems, Ann. of Math., 155 (2002), 369-404. doi: 10.2307/3062121.

[14]

M. C. CeruttiF. Ferrari and S. Salsa, Two-phase problems for linear elliptic operators with variable coefficients: Lipschitz free boundaries are $C^{1,\gamma}$, Arch. Rational Mech. Anal., 171 (2004), 329-348. doi: 10.1007/s00205-003-0290-5.

[15]

D. De Silva, Free boundary regularity for a problem with right hand side, Interfaces Free Bound., 13 (2011), 223-238. doi: 10.4171/IFB/255.

[16]

D. De SilvaF. Ferrari and S. Salsa, Two-phase problems with distributed sources: Regularity of the free boundary, Anal. PDE, 7 (2014), 267-310. doi: 10.2140/apde.2014.7.267.

[17]

D. De SilvaF. Ferrari and S. Salsa, Free boundary regularity for fully nonlinear non-homogeneous two-phase problems, J. Math. Pures Appl., 103 (2015), 658-694. doi: 10.1016/j.matpur.2014.07.006.

[18]

D. De SilvaF. Ferrari and S. Salsa, Perron's solutions for two-phase free boundary problems with distributed sources, Nonlinear Anal., 121 (2015), 382-402. doi: 10.1016/j.na.2015.02.013.

[19]

D. De SilvaF. Ferrari and S. Salsa, Regularity of higher order in two-phase free boundary problems, Trans. Amer. Math. Soc., 371 (2019), 3691-3720. doi: 10.1090/tran/7550.

[20]

D., F. Ferrari and S. Salsa, On the regularity of transmission problems for uniformly elliptic fully nonlinear equations, Two Nonlinear Days in Urbino 2017. Electron. J. Diff. Eqns., Conf., 25 (2018), 55–63.

[21]

D. De Silva and D. Jerison, A singular energy minimizing free boundary, J. Reine Angew. Math., 635 (2009), 1-22. doi: 10.1515/CRELLE.2009.074.

[22]

D. De Silva and O. Savin, Lipschitz regularity of solutions to two-phase free boundary problems, Int. Math. Res. Notices., Volume 2019, 7, 2204–2222. doi: 10.1093/imrn/rnx194.

[23]

D. De Silva and O. Savin, Global solutions to nonlinear two-phase free boundary problems, to appear in Comm. Pure Appl. Math. doi: 10.1002/cpa.21811.

[24]

M. Engelstein, A two phase free boundary problem for the harmonic measure, Ann. Sci. Éc. Norm. Supér. (4), 49 (2016), 859–905. doi: 10.24033/asens.2297.

[25]

M. Engelstein, L. Spolaor and B. Velichkov, Uniqueness of the blow-up at isolated singularities for the Alt-Caffarelli functional, arXiv: 1801.09276.

[26]

F. Ferrari, Two-phase problems for a class of fully nonlinear elliptic operators. Lipschitz free boundaries are $C^{1,\gamma}$, Amer. J. Math., 128 (2006), 541-571. doi: 10.1353/ajm.2006.0023.

[27]

F. Ferrari and S. Salsa, Regularity of the free boundary in two-phase problems for linear elliptic operators, Adv. Math., 214 (2007), 288-322. doi: 10.1016/j.aim.2007.02.004.

[28]

M. Feldman, Regularity for nonisotropic two-phase problems with Lipschitz free boundaries, Differential Integral Equations, 10 (1997), 1171-1179.

[29]

M. Feldman, Regularity of Lipschitz free boundaries in two-phase problems for fully nonlinear elliptic equations, Indiana Univ. Math. J., 50 (2001), 1171-1200. doi: 10.1512/iumj.2001.50.1921.

[30]

D. KinderlehrerL. Nirenberg and J. Spruck, Regularity in elliptic free-boundary problems Ⅰ, J. Analyse Math., 34 (1978), 86-119. doi: 10.1007/BF02790009.

[31]

H. Koch, Classical solutions to phase transition problems are smooth, Comm. Partial Differential Equations, 23 (1998), 389-437. doi: 10.1080/03605309808821351.

[32]

D. Kriventsov and F. Lin, Regularity for shape optimizers: The nondegenerate case, Comm. Pure Appl. Math., 71 (2018), 1535-1596. doi: 10.1002/cpa.21743.

[33]

C. Lederman and N. Wolanski, A two phase elliptic singular perturbation problem with a forcing term, J. Math. Pures Appl., 86 (2006), 552-589. doi: 10.1016/j.matpur.2006.10.008.

[34]

G. Lu and P. Wang, On the uniqueness of a solution of a two phase free boundary problem, J. Funct. Anal., 258 (2010), 2817-2833. doi: 10.1016/j.jfa.2009.08.008.

[35]

C. B. Morrey, Jr., Multiple Integrals in the Calculus of Variations, Reprint of the 1966 edition Classics in Mathematics, Springer-Verlag, Berlin, 2008. doi: 10.1007/978-3-540-69952-1.

[36]

N. Matevosyan and A. Petrosyan, Almost monotonicity formulas for elliptic and parabolic operators with variable coefficients, Comm. Pure Appl. Math., 64 (2011), 271-311. doi: 10.1002/cpa.20349.

[37]

E. V. Teixeira, A variational treatment for general elliptic equations of the flame propagation type: Regularity of the free boundary, Ann. Inst. H. Poincare Anal. Non Lineaire, 25 (2008), 633-658. doi: 10.1016/j.anihpc.2007.02.006.

[38]

E. V. Teixeira and L. Zhang, Monotonicity theorems for Laplace Beltrami operator on Riemannian manifolds, Adv. Math., 226 (2011), 1259-1284. doi: 10.1016/j.aim.2010.08.006.

[39]

S. SalsaF. Tulone and G. Verzini, Existence of viscosity solutions to two-phase problems for fully nonlinear equations with distributed sources, Mathematics in Engineering, 1 (2018), 147-173. doi: 10.3934/Mine.2018.1.147.

[40]

P. Y. Wang, Regularity of free boundaries of two-phase problems for fully nonlinear elliptic equations of second order. Ⅰ. Lipschitz free boundaries are $C^{1,\alpha}$, Comm. Pure Appl. Math., 53 (2000), 799-810. doi: 10.1002/(SICI)1097-0312(200007)53:7<799::AID-CPA1>3.0.CO;2-Q.

[41]

P. Y. Wang, Regularity of free boundaries of two-phase problems for fully nonlinear elliptic equations of second order. Ⅱ. Flat free boundaries are Lipschitz, Comm. in Partial Differential Equations, 27 (2002), 1497-1514. doi: 10.1081/PDE-120005846.

[42]

P. Y. Wang, Existence of solutions of two-phase free boundary for fully non linear equations of second order, J. of Geometric Analysis, (2002), 1497–1514. doi: 10.1007/BF02921886.

[1]

Huiqiang Jiang. Regularity of a vector valued two phase free boundary problems. Conference Publications, 2013, 2013 (special) : 365-374. doi: 10.3934/proc.2013.2013.365

[2]

Avner Friedman. Free boundary problems arising in biology. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 193-202. doi: 10.3934/dcdsb.2018013

[3]

Chonghu Guan, Fahuai Yi, Xiaoshan Chen. A fully nonlinear free boundary problem arising from optimal dividend and risk control model. Mathematical Control & Related Fields, 2019, 9 (3) : 425-452. doi: 10.3934/mcrf.2019020

[4]

Xinfu Chen, Huibin Cheng. Regularity of the free boundary for the American put option. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1751-1759. doi: 10.3934/dcdsb.2012.17.1751

[5]

Carlos E. Kenig, Tatiana Toro. On the free boundary regularity theorem of Alt and Caffarelli. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 397-422. doi: 10.3934/dcds.2004.10.397

[6]

Avner Friedman. Free boundary problems for systems of Stokes equations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1455-1468. doi: 10.3934/dcdsb.2016006

[7]

Serena Dipierro, Enrico Valdinoci. (Non)local and (non)linear free boundary problems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (3) : 465-476. doi: 10.3934/dcdss.2018025

[8]

Noriaki Yamazaki. Almost periodicity of solutions to free boundary problems. Conference Publications, 2001, 2001 (Special) : 386-397. doi: 10.3934/proc.2001.2001.386

[9]

Panagiota Daskalopoulos, Eunjai Rhee. Free-boundary regularity for generalized porous medium equations. Communications on Pure & Applied Analysis, 2003, 2 (4) : 481-494. doi: 10.3934/cpaa.2003.2.481

[10]

Noriaki Yamazaki. Doubly nonlinear evolution equations associated with elliptic-parabolic free boundary problems. Conference Publications, 2005, 2005 (Special) : 920-929. doi: 10.3934/proc.2005.2005.920

[11]

Feliz Minhós, Rui Carapinha. On higher order nonlinear impulsive boundary value problems. Conference Publications, 2015, 2015 (special) : 851-860. doi: 10.3934/proc.2015.0851

[12]

Ugur G. Abdulla, Evan Cosgrove, Jonathan Goldfarb. On the Frechet differentiability in optimal control of coefficients in parabolic free boundary problems. Evolution Equations & Control Theory, 2017, 6 (3) : 319-344. doi: 10.3934/eect.2017017

[13]

Daniela De Silva, Fausto Ferrari, Sandro Salsa. On two phase free boundary problems governed by elliptic equations with distributed sources. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 673-693. doi: 10.3934/dcdss.2014.7.673

[14]

Jesús Ildefonso Díaz. On the free boundary for quenching type parabolic problems via local energy methods. Communications on Pure & Applied Analysis, 2014, 13 (5) : 1799-1814. doi: 10.3934/cpaa.2014.13.1799

[15]

Mingxin Wang. Existence and uniqueness of solutions of free boundary problems in heterogeneous environments. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 415-421. doi: 10.3934/dcdsb.2018179

[16]

Avner Friedman, Xiulan Lai. Free boundary problems associated with cancer treatment by combination therapy. Discrete & Continuous Dynamical Systems - A, 2019, 0 (0) : 1-18. doi: 10.3934/dcds.2019233

[17]

Hayk Mikayelyan, Henrik Shahgholian. Convexity of the free boundary for an exterior free boundary problem involving the perimeter. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1431-1443. doi: 10.3934/cpaa.2013.12.1431

[18]

Toyohiko Aiki. A free boundary problem for an elastic material. Conference Publications, 2007, 2007 (Special) : 10-17. doi: 10.3934/proc.2007.2007.10

[19]

Xiaoshan Chen, Fahuai Yi. Free boundary problem of Barenblatt equation in stochastic control. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1421-1434. doi: 10.3934/dcdsb.2016003

[20]

Jia-Feng Cao, Wan-Tong Li, Fei-Ying Yang. Dynamics of a nonlocal SIS epidemic model with free boundary. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 247-266. doi: 10.3934/dcdsb.2017013

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (16)
  • HTML views (59)
  • Cited by (0)

Other articles
by authors

[Back to Top]