doi: 10.3934/dcds.2019238

On global solutions to semilinear elliptic equations related to the one-phase free boundary problem

1. 

Department of Mathematics, ETH Zürich, Rämistrasse 101, 8092 Zürich, Switzerland

2. 

Institut für Mathematik, Universität Zürich, Winterthurerstrasse, 8057 Zürich, Switzerland

* Corresponding author

Dedicado con afecto a Luis Caffarelli, cuyos trabajos han influenciado a toda una nueva generación de matemáticos.

Received  September 2018 Revised  February 2019 Published  June 2019

Fund Project: This work has received funding from the European Research Council (ERC) under the Grant Agreements No 721675 and No 801867. In addition, the second author was supported by the Swiss National Science Foundation and by MINECO grant MTM2017-84214-C2-1-P

Motivated by its relation to models of flame propagation, we study globally Lipschitz solutions of $ \Delta u = f(u) $ in $ \mathbb{R}^n $, where $ f $ is smooth, non-negative, with support in the interval $ [0,1] $. In such setting, any "blow-down" of the solution $ u $ will converge to a global solution to the classical one-phase free boundary problem of Alt–Caffarelli.

In analogy to a famous theorem of Savin for the Allen–Cahn equation, we study here the 1D symmetry of solutions $ u $ that are energy minimizers. Our main result establishes that, in dimensions $ n<6 $, if $ u $ is axially symmetric and stable then it is 1D.

Citation: Xavier Fernández-Real, Xavier Ros-Oton. On global solutions to semilinear elliptic equations related to the one-phase free boundary problem. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2019238
References:
[1]

H. W. Alt and L. Caffarelli, Existence and regularity for a minimum problem with free boundary, J. Reine Angew. Math., 325 (1981), 105-144. Google Scholar

[2]

L. Ambrosio and X. Cabré, Entire solutions of semilinear elliptic equations in $ \mathbb{R}^3$ and a conjecture of De Giorgi, J. Amer. Math. Soc., 13 (2000), 725-739. doi: 10.1090/S0894-0347-00-00345-3. Google Scholar

[3] J. D. Buckmaster and G. S. Ludford, Theory of Laminar Flames, Cambridge Univ. Press, Cambridge, 1982. Google Scholar
[4]

X. Cabré, Regularity of minimizers of semilinear elliptic problems up to dimension four, Comm. Pure Applied Mathematics, 63 (2010), 1362-1380. doi: 10.1002/cpa.20327. Google Scholar

[5]

X. Cabré and A. Capella, On the stability of radial solutions of semilinear elliptic equations in all of $ \mathbb{R}^n$, C. R. Acad. Sci. Paris, Ser. I, 338 (2004), 769-774. doi: 10.1016/j.crma.2004.03.013. Google Scholar

[6]

X. Cabré and X. Ros-Oton, Regularity of stable solutions up to dimension 7 in domains of double revolution, Comm. Partial Differential Equations, 38 (2013), 135-154. doi: 10.1080/03605302.2012.697505. Google Scholar

[7]

X. Cabré and J. Terra, Saddle-shaped solutions of bistable diffusion equations in all of $ \mathbb{R}^{2m}$, J. Eur. Math. Soc., 11 (2009), 819-843. doi: 10.4171/JEMS/168. Google Scholar

[8]

L. CaffarelliD. Jerison and C. Kenig, Global energy minimizers for free boundary problems and full regularity in three dimension, Contemp. Math., 350 (2004), 83-97. doi: 10.1090/conm/350/06339. Google Scholar

[9]

L. Caffarelli and S. Salsa, A Geometric Approach To Free Boundary Problems, AMS, 2005. doi: 10.1090/gsm/068. Google Scholar

[10]

L. Caffarelli and J. L. Vázquez, A free-boundary problem for the heat equation arising in flame propagation, Trans. Amer. Math. Soc., 347 (1995), 411-441. doi: 10.1090/S0002-9947-1995-1260199-7. Google Scholar

[11]

E. De Giorgi, Proceedings of the International Meeting on Recent Methods in Nonlinear Analysis (Rome, 1978), (Pitagora, Bologna, Italy), 131–188.Google Scholar

[12]

D. De Silva and D. Jerison, A singular energy minimizing free boundary, J. Reine Angew. Math., 635 (2009), 1-22. doi: 10.1515/CRELLE.2009.074. Google Scholar

[13]

L. Dupaigne and A. Farina, Stable solutions of $ -\Delta u = f(u) $ in $ \mathbb{R}^N $, J. Eur. Math. Soc., 12 (2010), 855-882. doi: 10.4171/JEMS/217. Google Scholar

[14]

A. Farina, Propriétés qualitatives de solutions d'équations et systèmes d'équations non-linéaires, Habilitation à diriger des recherches, Paris Ⅵ, 2002.Google Scholar

[15]

A. Farina and E. Valdinoci, The State of the Art for a Conjecture of De Giorgi and Related Problems, Recent Progress on Reaction-Diffusion Systems and Viscosity Solutions, World Scientific, 2008. doi: 10.1142/9789812834744_0004. Google Scholar

[16]

D. Jerison and O. Savin, Some remarks on stability of cones for the one-phase free boundary problem, Geom. Funct. Anal., 25 (2015), 1240-1257. doi: 10.1007/s00039-015-0335-6. Google Scholar

[17]

Y. LiuK. Wang and J. Wei, Global minimizers of the Allen–Cahn equation in dimension $ n = 8$, J. Math. Pures Appl., 108 (2017), 818-840. doi: 10.1016/j.matpur.2017.05.006. Google Scholar

[18]

Y. Liu, K. Wang and J. Wei, On one phase free boundary problem in $ \mathbb{R}^n$, preprint, arXiv: 1705.07345, (2017).Google Scholar

[19]

A. Petrosyan and N. K. Yip, Nonuniqueness in a free boundary problem from combustion, J. Geom. Anal., 18 (2007), 1098-1126. doi: 10.1007/s12220-008-9044-9. Google Scholar

[20]

O. Savin, Regularity of flat level sets in phase transitions, Ann. of Math., 169 (2009), 41-78. doi: 10.4007/annals.2009.169.41. Google Scholar

[21]

P. Sternberg and K. Zumbrun, Connectivity of phase boundaries in strictly convex domains, Arch. Rational Mech. Anal., 141 (1998), 375-400. doi: 10.1007/s002050050081. Google Scholar

[22]

G. S. Weiss, A singular limit arising in combustion theory: Fine properties of the free boundary, Calc. Var. PDE, 17 (2003), 311-340. Google Scholar

show all references

References:
[1]

H. W. Alt and L. Caffarelli, Existence and regularity for a minimum problem with free boundary, J. Reine Angew. Math., 325 (1981), 105-144. Google Scholar

[2]

L. Ambrosio and X. Cabré, Entire solutions of semilinear elliptic equations in $ \mathbb{R}^3$ and a conjecture of De Giorgi, J. Amer. Math. Soc., 13 (2000), 725-739. doi: 10.1090/S0894-0347-00-00345-3. Google Scholar

[3] J. D. Buckmaster and G. S. Ludford, Theory of Laminar Flames, Cambridge Univ. Press, Cambridge, 1982. Google Scholar
[4]

X. Cabré, Regularity of minimizers of semilinear elliptic problems up to dimension four, Comm. Pure Applied Mathematics, 63 (2010), 1362-1380. doi: 10.1002/cpa.20327. Google Scholar

[5]

X. Cabré and A. Capella, On the stability of radial solutions of semilinear elliptic equations in all of $ \mathbb{R}^n$, C. R. Acad. Sci. Paris, Ser. I, 338 (2004), 769-774. doi: 10.1016/j.crma.2004.03.013. Google Scholar

[6]

X. Cabré and X. Ros-Oton, Regularity of stable solutions up to dimension 7 in domains of double revolution, Comm. Partial Differential Equations, 38 (2013), 135-154. doi: 10.1080/03605302.2012.697505. Google Scholar

[7]

X. Cabré and J. Terra, Saddle-shaped solutions of bistable diffusion equations in all of $ \mathbb{R}^{2m}$, J. Eur. Math. Soc., 11 (2009), 819-843. doi: 10.4171/JEMS/168. Google Scholar

[8]

L. CaffarelliD. Jerison and C. Kenig, Global energy minimizers for free boundary problems and full regularity in three dimension, Contemp. Math., 350 (2004), 83-97. doi: 10.1090/conm/350/06339. Google Scholar

[9]

L. Caffarelli and S. Salsa, A Geometric Approach To Free Boundary Problems, AMS, 2005. doi: 10.1090/gsm/068. Google Scholar

[10]

L. Caffarelli and J. L. Vázquez, A free-boundary problem for the heat equation arising in flame propagation, Trans. Amer. Math. Soc., 347 (1995), 411-441. doi: 10.1090/S0002-9947-1995-1260199-7. Google Scholar

[11]

E. De Giorgi, Proceedings of the International Meeting on Recent Methods in Nonlinear Analysis (Rome, 1978), (Pitagora, Bologna, Italy), 131–188.Google Scholar

[12]

D. De Silva and D. Jerison, A singular energy minimizing free boundary, J. Reine Angew. Math., 635 (2009), 1-22. doi: 10.1515/CRELLE.2009.074. Google Scholar

[13]

L. Dupaigne and A. Farina, Stable solutions of $ -\Delta u = f(u) $ in $ \mathbb{R}^N $, J. Eur. Math. Soc., 12 (2010), 855-882. doi: 10.4171/JEMS/217. Google Scholar

[14]

A. Farina, Propriétés qualitatives de solutions d'équations et systèmes d'équations non-linéaires, Habilitation à diriger des recherches, Paris Ⅵ, 2002.Google Scholar

[15]

A. Farina and E. Valdinoci, The State of the Art for a Conjecture of De Giorgi and Related Problems, Recent Progress on Reaction-Diffusion Systems and Viscosity Solutions, World Scientific, 2008. doi: 10.1142/9789812834744_0004. Google Scholar

[16]

D. Jerison and O. Savin, Some remarks on stability of cones for the one-phase free boundary problem, Geom. Funct. Anal., 25 (2015), 1240-1257. doi: 10.1007/s00039-015-0335-6. Google Scholar

[17]

Y. LiuK. Wang and J. Wei, Global minimizers of the Allen–Cahn equation in dimension $ n = 8$, J. Math. Pures Appl., 108 (2017), 818-840. doi: 10.1016/j.matpur.2017.05.006. Google Scholar

[18]

Y. Liu, K. Wang and J. Wei, On one phase free boundary problem in $ \mathbb{R}^n$, preprint, arXiv: 1705.07345, (2017).Google Scholar

[19]

A. Petrosyan and N. K. Yip, Nonuniqueness in a free boundary problem from combustion, J. Geom. Anal., 18 (2007), 1098-1126. doi: 10.1007/s12220-008-9044-9. Google Scholar

[20]

O. Savin, Regularity of flat level sets in phase transitions, Ann. of Math., 169 (2009), 41-78. doi: 10.4007/annals.2009.169.41. Google Scholar

[21]

P. Sternberg and K. Zumbrun, Connectivity of phase boundaries in strictly convex domains, Arch. Rational Mech. Anal., 141 (1998), 375-400. doi: 10.1007/s002050050081. Google Scholar

[22]

G. S. Weiss, A singular limit arising in combustion theory: Fine properties of the free boundary, Calc. Var. PDE, 17 (2003), 311-340. Google Scholar

Figure 1.  Representation of $ \Phi_\varepsilon(t) = \int_0^t \beta_\varepsilon(s)\, ds $
Figure 2.  Representation of the cases (ⅰ) $ a > 1 $, (ⅱ) $ a = 1 $, and (ⅲ) $ a < 1 $
[1]

Changfeng Gui. On some problems related to de Giorgi’s conjecture. Communications on Pure & Applied Analysis, 2003, 2 (1) : 101-106. doi: 10.3934/cpaa.2003.2.101

[2]

Donatella Danielli, Marianne Korten. On the pointwise jump condition at the free boundary in the 1-phase Stefan problem. Communications on Pure & Applied Analysis, 2005, 4 (2) : 357-366. doi: 10.3934/cpaa.2005.4.357

[3]

Norbert Požár, Giang Thi Thu Vu. Long-time behavior of the one-phase Stefan problem in periodic and random media. Discrete & Continuous Dynamical Systems - S, 2018, 11 (5) : 991-1010. doi: 10.3934/dcdss.2018058

[4]

Fabio Camilli, Elisabetta Carlini, Claudio Marchi. A flame propagation model on a network with application to a blocking problem. Discrete & Continuous Dynamical Systems - S, 2018, 11 (5) : 825-843. doi: 10.3934/dcdss.2018051

[5]

Maxime Hauray, Samir Salem. Propagation of chaos for the Vlasov-Poisson-Fokker-Planck system in 1D. Kinetic & Related Models, 2019, 12 (2) : 269-302. doi: 10.3934/krm.2019012

[6]

Michael L. Frankel, Victor Roytburd. Dynamical structure of one-phase model of solid combustion. Conference Publications, 2005, 2005 (Special) : 287-296. doi: 10.3934/proc.2005.2005.287

[7]

Naoki Sato, Toyohiko Aiki, Yusuke Murase, Ken Shirakawa. A one dimensional free boundary problem for adsorption phenomena. Networks & Heterogeneous Media, 2014, 9 (4) : 655-668. doi: 10.3934/nhm.2014.9.655

[8]

Daniela De Silva, Fausto Ferrari, Sandro Salsa. On two phase free boundary problems governed by elliptic equations with distributed sources. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 673-693. doi: 10.3934/dcdss.2014.7.673

[9]

Daniela De Silva, Fausto Ferrari, Sandro Salsa. Recent progresses on elliptic two-phase free boundary problems. Discrete & Continuous Dynamical Systems - A, 2019, 0 (0) : 1-18. doi: 10.3934/dcds.2019239

[10]

Tomasz Cieślak, Kentarou Fujie. Global existence in the 1D quasilinear parabolic-elliptic chemotaxis system with critical nonlinearity. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 165-176. doi: 10.3934/dcdss.2020009

[11]

Luis A. Caffarelli, Alexis F. Vasseur. The De Giorgi method for regularity of solutions of elliptic equations and its applications to fluid dynamics. Discrete & Continuous Dynamical Systems - S, 2010, 3 (3) : 409-427. doi: 10.3934/dcdss.2010.3.409

[12]

Fabio Paronetto. A Harnack type inequality and a maximum principle for an elliptic-parabolic and forward-backward parabolic De Giorgi class. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 853-866. doi: 10.3934/dcdss.2017043

[13]

Alexander Zlotnik, Ilya Zlotnik. Finite element method with discrete transparent boundary conditions for the time-dependent 1D Schrödinger equation. Kinetic & Related Models, 2012, 5 (3) : 639-667. doi: 10.3934/krm.2012.5.639

[14]

Rachel Clipp, Brooke Steele. An evaluation of dynamic outlet boundary conditions in a 1D fluid dynamics model. Mathematical Biosciences & Engineering, 2012, 9 (1) : 61-74. doi: 10.3934/mbe.2012.9.61

[15]

Anna Kostianko, Sergey Zelik. Inertial manifolds for 1D reaction-diffusion-advection systems. Part Ⅰ: Dirichlet and Neumann boundary conditions. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2357-2376. doi: 10.3934/cpaa.2017116

[16]

Anna Kostianko, Sergey Zelik. Inertial manifolds for 1D reaction-diffusion-advection systems. Part Ⅱ: periodic boundary conditions. Communications on Pure & Applied Analysis, 2018, 17 (1) : 285-317. doi: 10.3934/cpaa.2018017

[17]

Bernard Ducomet, Alexander Zlotnik, Ilya Zlotnik. On a family of finite-difference schemes with approximate transparent boundary conditions for a generalized 1D Schrödinger equation. Kinetic & Related Models, 2009, 2 (1) : 151-179. doi: 10.3934/krm.2009.2.151

[18]

Jing Wang, Lining Tong. Vanishing viscosity limit of 1d quasilinear parabolic equation with multiple boundary layers. Communications on Pure & Applied Analysis, 2019, 18 (2) : 887-910. doi: 10.3934/cpaa.2019043

[19]

Elena Rossi. Well-posedness of general 1D initial boundary value problems for scalar balance laws. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3577-3608. doi: 10.3934/dcds.2019147

[20]

Quansen Jiu, Zhouping Xin. The Cauchy problem for 1D compressible flows with density-dependent viscosity coefficients. Kinetic & Related Models, 2008, 1 (2) : 313-330. doi: 10.3934/krm.2008.1.313

2018 Impact Factor: 1.143

Article outline

Figures and Tables

[Back to Top]