doi: 10.3934/dcds.2019232

Superfluids passing an obstacle and vortex nucleation

1. 

Courant Institute of Mathematical Sciences, 251 Mercer Street, New York, NY. 10012, USA

2. 

Department of Mathematics, University of British Columbia, Vancouver BC V6T 1Z2, Canada

Dedicated to Professor Luis Caffarelli on the occasion of his 70th birthday, with deep admiration

Received  June 2018 Revised  July 2018 Published  June 2019

We consider a superfluid described by the Gross-Pitaevskii equation passing an obstacle
$ \epsilon^2 \Delta u+ u(1-|u|^2) = 0 \ \mbox{in} \ {\mathbb R}^d \backslash \Omega, \ \ \frac{\partial u}{\partial \nu} = 0 \ \mbox{on}\ \partial \Omega $
where
$ \Omega $
is a smooth bounded domain in
$ {\mathbb R}^d $
(
$ d\geq 2 $
), which is referred as the obstacle and
$ \epsilon>0 $
is sufficiently small. We first construct a vortex free solution of the form
$ u = \rho_\epsilon (x) e^{i \frac{\Phi_\epsilon}{\epsilon}} $
with
$ \rho_\epsilon (x) \to 1-|\nabla \Phi^\delta(x)|^2, \Phi_\epsilon (x) \to \Phi^\delta (x) $
where
$ \Phi^\delta (x) $
is the unique solution for the subsonic irrotational flow equation
$ \nabla ( (1-|\nabla \Phi|^2)\nabla \Phi ) = 0 \ \mbox{in} \ {\mathbb R}^d \backslash \Omega, \ \frac{\partial \Phi}{\partial \nu} = 0 \ \mbox{on} \ \partial \Omega, \ \nabla \Phi (x) \to \delta \vec{e}_d \ \mbox{as} \ |x| \to +\infty $
and
$ |\delta | <\delta_{*} $
(the sound speed).
In dimension
$ d = 2 $
, on the background of this vortex free solution we also construct solutions with single vortex close to the maximum or minimum points of the function
$ |\nabla \Phi^\delta (x)|^2 $
(which are on the boundary of the obstacle). The latter verifies the vortex nucleation phenomena (for the steady states) in superfluids described by the Gross-Pitaevskii equations. Moreover, after some proper scalings, the limits of these vortex solutions are traveling wave solution of the Gross-Pitaevskii equation. These results also show rigorously the conclusions drawn from the numerical computations in [26,27].
Extensions to Dirichlet boundary conditions, which may be more consistent with the situation in the physical experiments and numerical simulations (see [1] and references therein) for the trapped Bose-Einstein condensates, are also discussed.
Citation: Fanghua Lin, Juncheng Wei. Superfluids passing an obstacle and vortex nucleation. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2019232
References:
[1]

A. AftalionQ. Du and Y. Pomeau, Dissipative flow and vortex shedding in the Painleve boundary layer of a Bose-Einstein condensate, Phys. Rev. Lett., 91 (2003), 090407-1-4.

[2]

F. Bethuel and J.-C. Saut, Travelling waves for the Gross-Pitaevskii equation. Ⅰ, Ann. Inst. H. Poincare' Phys. The'or., 70 (1999), 147-238.

[3]

F. BethuelG. Orlandi and D. Smets, Vortex rings for the Gross-Pitaevskii equation, J. Eur. Math. Soc., 6 (2004), 17-94.

[4]

F. BethuelP. Gravejat and J.-G. Saut, Travelling waves for the Gross-Pitaevskii equation, Ⅱ, Comm. Math. Phys., 285 (2009), 567-651. doi: 10.1007/s00220-008-0614-2.

[5]

F. BethuelH. Brezis and F. He'lein, Asymptotics for the minimization of a Ginzburg-Landau functional, Calc. Var. and PDE., 1 (1993), 123-148. doi: 10.1007/BF01191614.

[6]

F. Bethuel, H. Brezis and F. He'lein, Ginzburg-Landau Vortices, Birkha"user, Boston, 1994 doi: 10.1007/978-1-4612-0287-5.

[7]

F. BethuelP. Gravejat and J.-C. Saut, Travelling waves for the Gross-Pitaevskii equation. Ⅱ, Comm. Math. Phys., 285 (2009), 567-651. doi: 10.1007/s00220-008-0614-2.

[8]

L. Bers, Ezistence and uniqueness of a subsonic pow past a given profile, Comm. Pure Appl. Math., 7 (1954), 441-504. doi: 10.1002/cpa.3160070303.

[9]

L. Bers, Mathematical Aspects of Subsonic and Transonic Gas Dynamics, John Wiley and Sons, New York, 1958.

[10]

S. Byun and L. Wang, The conormal derivative problem for elliptic equations with BMO coefficients on Reifenberg flat domains, Proc. Lond. Math. Soc., 90 (2005), 245-272. doi: 10.1112/S0024611504014960.

[11]

R. CarlesR. Danchin and J.-C. Saut, Madelung, Gross-Pitaevskii and Korteweg, Nonlinearity, 25 (2012), 2843-2873. doi: 10.1088/0951-7715/25/10/2843.

[12]

D. Chiron and M. Maris, Rarefaction pulses for the nonlinear Schrödinger equation in the transonic limit, Comm. Math. Phys., 326 (2014), 329-392. doi: 10.1007/s00220-013-1879-7.

[13]

C. Coste, Nonlinear Schrodinger equation and superfluid hydrodynamics, Eur. Phys. J. B Condens. Matter Phys., 1 (1998), 245-253. doi: 10.1007/s100510050178.

[14]

M. del PinoM. Kowalczyk and J. Wei, Entire solutions of the Allen-Cahn equation and complete embedded minimal surfaces of finite total curvature, Journal of Differential Geometry, 83 (2013), 67-131. doi: 10.4310/jdg/1357141507.

[15]

M. del PinoM. Kowalczyk and M. Musso, Variational reduction for Ginzburg-Landau vortices, J. Funct. Anal., 239 (2006), 497-541. doi: 10.1016/j.jfa.2006.07.006.

[16]

G.-C. Dong and B. Ou, Subsonic flows around a body in space, Comm. Partial Differential Equations, 18 (1993), 355-379. doi: 10.1080/03605309308820933.

[17]

M. del PinoP. Felmer and M. Kowalczyk, Minimality and nondegeneracy of degree-one Ginzburg-Landau vortex as a Hardy's type inequality, Int. Math. Res. Not., (2004), 1511-1527. doi: 10.1155/S1073792804133588.

[18]

Q. DuJ. Wei and C. Zhao, Vortex solutions of the high-$\kappa$ high-field Ginzburg-Landau model with an applied current, SIAM J. Math. Anal., 42 (2010), 2368-2401. doi: 10.1137/090769983.

[19]

R. Finn and D. Gilbarg, Three dimensional subsonicflows and asymptotic estimates for elliptic partial differential equations, Acta Math., 98 (1957), 265-296. doi: 10.1007/BF02404476.

[20]

T. FrischY. Pomeau and S. Rica, Transition to dissipation in a model of superflow, Phys. Rev. Lett., 69 (1992), 1644-1647. doi: 10.1103/PhysRevLett.69.1644.

[21]

P. Gravejat, Asymptotics for the travelling waves in the Gross-Pitaevskii equation, Asymptot. Anal., 45 (2005), 227-299.

[22]

P. Gravejat, Limit at infinity and nonexistence results for sonic travelling waves in the Gross-Pitaevskii equation, Differential Integral Equations, 17 (2004), 1213-1232.

[23]

P. Gravejat, Decay for travelling waves in the Gross-Pitaevskii equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004), 591-637. doi: 10.1016/j.anihpc.2003.09.001.

[24]

P. Gravejat, A non-existence result for supersonic travelling waves in the Gross-Pitaevskii equation, Comm. Math. Phys., 243 (2003), 93-103. doi: 10.1007/s00220-003-0961-y.

[25]

J. Grant and P. H. Roberts, Motions in a Bose condensate. Ⅲ. The structure and effective masses of charged and uncharged impurities, J. Phys. A: Math., Nucl. Gen., 7 (1974), 260-279. doi: 10.1088/0305-4470/34/1/306.

[26]

C. Huepe and M. E. Brachet, Scaling laws for vortical nucleation solutions in a model of superflow, Phys. D, 140 (2000), 126-140. doi: 10.1016/S0167-2789(99)00229-8.

[27]

M. AbidC. HuepeS. MetensC. NoreC. T. PhamL. S. Tuckerman and M. E. Brachet, Gross-Pitaevskii dynamics of Bose-Einstein condensates and superfluid turbulence, Fluid Dynam. Res., 33 (2003), 509-544. doi: 10.1016/j.fluiddyn.2003.09.001.

[28]

C. A. JonesS. J. Putterman and P. H. Roberts, Stability of wave solutions of nonlinear Schrodinger equations in two and three dimensions, J. Phys A: Math. Gen., 19 (1986), 2991-3011.

[29]

C. A. Jones and P. H. Roberts, Motion in a Bose condensate Ⅳ, Axisymmetric solitary waves, J. Phys. A, 15 (1982), 2599-2619. doi: 10.1088/0305-4470/15/8/036.

[30]

C. Josserand and Y. Pomeau, Nonlinear aspects of the theory of Bose-Einstein condensates, Nonlinearity, 14 (2001), R25-R62. doi: 10.1088/0951-7715/14/5/201.

[31]

C. JosserandY. Pomeau and S. Rica, Vortex shedding in a model of superflow, Phys. D, 134 (1999), 111-125. doi: 10.1016/S0167-2789(99)00066-4.

[32]

L. Landau and E. Lifshitz, On the theory of the dispersion of magnetic permeability in ferromagnetic bodies, Phys. Z. Sowj, 8 (1935), 153.

[33]

F.-H. Lin and J. Wei, Traveling wave solutions of Schrödinger map equation, Comm. Pure Appl. Math., 63 (2010), 1585-1621. doi: 10.1002/cpa.20338.

[34]

F.-H. Lin and P. Zhang, Semiclassical limit of the Gross-Pitaevskii equation in an exterior domain, Arch. Ration. Mech. Anal., 179 (2006), 79-107. doi: 10.1007/s00205-005-0383-4.

[35]

Y. Liu and J. Wei, Adler-Moser polynomials and traveling waves solutions of Gross-Pitaevskii, preprint.

[36]

P. I. Lizorkin, Multipliers of Fourier integrals, Proc. Steklov Inst. Math., 89 (1967), 269-290.

[37]

M. Maris, Existence of nonstationary bubbles in higher dimensions, J. Math. Pures Appl., 81 (2002), 1207-1239. doi: 10.1016/S0021-7824(02)01274-6.

[38]

M. Maris, Nonexistence of supersonic traveling waves for nonlinear Schrödinger equations with nonzero conditions at infinity, SIAM J. Math. Anal., 40 (2008), 1076-1103. doi: 10.1137/070711189.

[39]

M. Maris, Traveling waves for nonlinear Schrodinger equations with nonzero conditions at infinity, Ann. Math., 178 (2013), 107-182. doi: 10.4007/annals.2013.178.1.2.

[40]

C.-T. PhamC. Nore and M. E. Brachet, Boundary layers and emitted excitations in nonlinear Schröinger superflow past a disk, Phys. D, 210 (2005), 203-226. doi: 10.1016/j.physd.2005.07.013.

[41]

S. Rica, A remark on the critical speed of vortex nucleation in the nonlinear Schrodinger equation, Phys. D, 148 (2001), 221-226. doi: 10.1016/S0167-2789(00)00168-8.

[42]

O. Rey and J. Wei, Blowing up solutions for an elliptic Neumann problem with sub- or supercritical nonlinearity. Part Ⅱ: $N \geq 4$, Ann. Non linearie, Annoles de l'Institut H. Poincaré, 22 (2005), 459-484. doi: 10.1016/j.anihpc.2004.07.004.

[43]

M. Shiffman, On the ezistence of subsonic flows of a compressible fluid, Arch. Rational Mech. Anal., 2 (1952), 605-652. doi: 10.1512/iumj.1952.1.51020.

[44]

E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Mathematical Series, vol. 32, Princeton University Press, Princeton, NJ, 1971.

[45]

J. Wei, Uniqueness and critical spectrum of boundary spike solutions, Proc. Royal Soc. Edin. A, 131 (2001), 1457-1480. doi: 10.1017/S0308210500001487.

show all references

References:
[1]

A. AftalionQ. Du and Y. Pomeau, Dissipative flow and vortex shedding in the Painleve boundary layer of a Bose-Einstein condensate, Phys. Rev. Lett., 91 (2003), 090407-1-4.

[2]

F. Bethuel and J.-C. Saut, Travelling waves for the Gross-Pitaevskii equation. Ⅰ, Ann. Inst. H. Poincare' Phys. The'or., 70 (1999), 147-238.

[3]

F. BethuelG. Orlandi and D. Smets, Vortex rings for the Gross-Pitaevskii equation, J. Eur. Math. Soc., 6 (2004), 17-94.

[4]

F. BethuelP. Gravejat and J.-G. Saut, Travelling waves for the Gross-Pitaevskii equation, Ⅱ, Comm. Math. Phys., 285 (2009), 567-651. doi: 10.1007/s00220-008-0614-2.

[5]

F. BethuelH. Brezis and F. He'lein, Asymptotics for the minimization of a Ginzburg-Landau functional, Calc. Var. and PDE., 1 (1993), 123-148. doi: 10.1007/BF01191614.

[6]

F. Bethuel, H. Brezis and F. He'lein, Ginzburg-Landau Vortices, Birkha"user, Boston, 1994 doi: 10.1007/978-1-4612-0287-5.

[7]

F. BethuelP. Gravejat and J.-C. Saut, Travelling waves for the Gross-Pitaevskii equation. Ⅱ, Comm. Math. Phys., 285 (2009), 567-651. doi: 10.1007/s00220-008-0614-2.

[8]

L. Bers, Ezistence and uniqueness of a subsonic pow past a given profile, Comm. Pure Appl. Math., 7 (1954), 441-504. doi: 10.1002/cpa.3160070303.

[9]

L. Bers, Mathematical Aspects of Subsonic and Transonic Gas Dynamics, John Wiley and Sons, New York, 1958.

[10]

S. Byun and L. Wang, The conormal derivative problem for elliptic equations with BMO coefficients on Reifenberg flat domains, Proc. Lond. Math. Soc., 90 (2005), 245-272. doi: 10.1112/S0024611504014960.

[11]

R. CarlesR. Danchin and J.-C. Saut, Madelung, Gross-Pitaevskii and Korteweg, Nonlinearity, 25 (2012), 2843-2873. doi: 10.1088/0951-7715/25/10/2843.

[12]

D. Chiron and M. Maris, Rarefaction pulses for the nonlinear Schrödinger equation in the transonic limit, Comm. Math. Phys., 326 (2014), 329-392. doi: 10.1007/s00220-013-1879-7.

[13]

C. Coste, Nonlinear Schrodinger equation and superfluid hydrodynamics, Eur. Phys. J. B Condens. Matter Phys., 1 (1998), 245-253. doi: 10.1007/s100510050178.

[14]

M. del PinoM. Kowalczyk and J. Wei, Entire solutions of the Allen-Cahn equation and complete embedded minimal surfaces of finite total curvature, Journal of Differential Geometry, 83 (2013), 67-131. doi: 10.4310/jdg/1357141507.

[15]

M. del PinoM. Kowalczyk and M. Musso, Variational reduction for Ginzburg-Landau vortices, J. Funct. Anal., 239 (2006), 497-541. doi: 10.1016/j.jfa.2006.07.006.

[16]

G.-C. Dong and B. Ou, Subsonic flows around a body in space, Comm. Partial Differential Equations, 18 (1993), 355-379. doi: 10.1080/03605309308820933.

[17]

M. del PinoP. Felmer and M. Kowalczyk, Minimality and nondegeneracy of degree-one Ginzburg-Landau vortex as a Hardy's type inequality, Int. Math. Res. Not., (2004), 1511-1527. doi: 10.1155/S1073792804133588.

[18]

Q. DuJ. Wei and C. Zhao, Vortex solutions of the high-$\kappa$ high-field Ginzburg-Landau model with an applied current, SIAM J. Math. Anal., 42 (2010), 2368-2401. doi: 10.1137/090769983.

[19]

R. Finn and D. Gilbarg, Three dimensional subsonicflows and asymptotic estimates for elliptic partial differential equations, Acta Math., 98 (1957), 265-296. doi: 10.1007/BF02404476.

[20]

T. FrischY. Pomeau and S. Rica, Transition to dissipation in a model of superflow, Phys. Rev. Lett., 69 (1992), 1644-1647. doi: 10.1103/PhysRevLett.69.1644.

[21]

P. Gravejat, Asymptotics for the travelling waves in the Gross-Pitaevskii equation, Asymptot. Anal., 45 (2005), 227-299.

[22]

P. Gravejat, Limit at infinity and nonexistence results for sonic travelling waves in the Gross-Pitaevskii equation, Differential Integral Equations, 17 (2004), 1213-1232.

[23]

P. Gravejat, Decay for travelling waves in the Gross-Pitaevskii equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004), 591-637. doi: 10.1016/j.anihpc.2003.09.001.

[24]

P. Gravejat, A non-existence result for supersonic travelling waves in the Gross-Pitaevskii equation, Comm. Math. Phys., 243 (2003), 93-103. doi: 10.1007/s00220-003-0961-y.

[25]

J. Grant and P. H. Roberts, Motions in a Bose condensate. Ⅲ. The structure and effective masses of charged and uncharged impurities, J. Phys. A: Math., Nucl. Gen., 7 (1974), 260-279. doi: 10.1088/0305-4470/34/1/306.

[26]

C. Huepe and M. E. Brachet, Scaling laws for vortical nucleation solutions in a model of superflow, Phys. D, 140 (2000), 126-140. doi: 10.1016/S0167-2789(99)00229-8.

[27]

M. AbidC. HuepeS. MetensC. NoreC. T. PhamL. S. Tuckerman and M. E. Brachet, Gross-Pitaevskii dynamics of Bose-Einstein condensates and superfluid turbulence, Fluid Dynam. Res., 33 (2003), 509-544. doi: 10.1016/j.fluiddyn.2003.09.001.

[28]

C. A. JonesS. J. Putterman and P. H. Roberts, Stability of wave solutions of nonlinear Schrodinger equations in two and three dimensions, J. Phys A: Math. Gen., 19 (1986), 2991-3011.

[29]

C. A. Jones and P. H. Roberts, Motion in a Bose condensate Ⅳ, Axisymmetric solitary waves, J. Phys. A, 15 (1982), 2599-2619. doi: 10.1088/0305-4470/15/8/036.

[30]

C. Josserand and Y. Pomeau, Nonlinear aspects of the theory of Bose-Einstein condensates, Nonlinearity, 14 (2001), R25-R62. doi: 10.1088/0951-7715/14/5/201.

[31]

C. JosserandY. Pomeau and S. Rica, Vortex shedding in a model of superflow, Phys. D, 134 (1999), 111-125. doi: 10.1016/S0167-2789(99)00066-4.

[32]

L. Landau and E. Lifshitz, On the theory of the dispersion of magnetic permeability in ferromagnetic bodies, Phys. Z. Sowj, 8 (1935), 153.

[33]

F.-H. Lin and J. Wei, Traveling wave solutions of Schrödinger map equation, Comm. Pure Appl. Math., 63 (2010), 1585-1621. doi: 10.1002/cpa.20338.

[34]

F.-H. Lin and P. Zhang, Semiclassical limit of the Gross-Pitaevskii equation in an exterior domain, Arch. Ration. Mech. Anal., 179 (2006), 79-107. doi: 10.1007/s00205-005-0383-4.

[35]

Y. Liu and J. Wei, Adler-Moser polynomials and traveling waves solutions of Gross-Pitaevskii, preprint.

[36]

P. I. Lizorkin, Multipliers of Fourier integrals, Proc. Steklov Inst. Math., 89 (1967), 269-290.

[37]

M. Maris, Existence of nonstationary bubbles in higher dimensions, J. Math. Pures Appl., 81 (2002), 1207-1239. doi: 10.1016/S0021-7824(02)01274-6.

[38]

M. Maris, Nonexistence of supersonic traveling waves for nonlinear Schrödinger equations with nonzero conditions at infinity, SIAM J. Math. Anal., 40 (2008), 1076-1103. doi: 10.1137/070711189.

[39]

M. Maris, Traveling waves for nonlinear Schrodinger equations with nonzero conditions at infinity, Ann. Math., 178 (2013), 107-182. doi: 10.4007/annals.2013.178.1.2.

[40]

C.-T. PhamC. Nore and M. E. Brachet, Boundary layers and emitted excitations in nonlinear Schröinger superflow past a disk, Phys. D, 210 (2005), 203-226. doi: 10.1016/j.physd.2005.07.013.

[41]

S. Rica, A remark on the critical speed of vortex nucleation in the nonlinear Schrodinger equation, Phys. D, 148 (2001), 221-226. doi: 10.1016/S0167-2789(00)00168-8.

[42]

O. Rey and J. Wei, Blowing up solutions for an elliptic Neumann problem with sub- or supercritical nonlinearity. Part Ⅱ: $N \geq 4$, Ann. Non linearie, Annoles de l'Institut H. Poincaré, 22 (2005), 459-484. doi: 10.1016/j.anihpc.2004.07.004.

[43]

M. Shiffman, On the ezistence of subsonic flows of a compressible fluid, Arch. Rational Mech. Anal., 2 (1952), 605-652. doi: 10.1512/iumj.1952.1.51020.

[44]

E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Mathematical Series, vol. 32, Princeton University Press, Princeton, NJ, 1971.

[45]

J. Wei, Uniqueness and critical spectrum of boundary spike solutions, Proc. Royal Soc. Edin. A, 131 (2001), 1457-1480. doi: 10.1017/S0308210500001487.

[1]

Ko-Shin Chen, Peter Sternberg. Dynamics of Ginzburg-Landau and Gross-Pitaevskii vortices on manifolds. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1905-1931. doi: 10.3934/dcds.2014.34.1905

[2]

Norman E. Dancer. On the converse problem for the Gross-Pitaevskii equations with a large parameter. Discrete & Continuous Dynamical Systems - A, 2014, 34 (6) : 2481-2493. doi: 10.3934/dcds.2014.34.2481

[3]

Yujin Guo, Xiaoyu Zeng, Huan-Song Zhou. Blow-up solutions for two coupled Gross-Pitaevskii equations with attractive interactions. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3749-3786. doi: 10.3934/dcds.2017159

[4]

Jeremy L. Marzuola, Michael I. Weinstein. Long time dynamics near the symmetry breaking bifurcation for nonlinear Schrödinger/Gross-Pitaevskii equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1505-1554. doi: 10.3934/dcds.2010.28.1505

[5]

Dong Deng, Ruikuan Liu. Bifurcation solutions of Gross-Pitaevskii equations for spin-1 Bose-Einstein condensates. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3175-3193. doi: 10.3934/dcdsb.2018306

[6]

Thomas Chen, Nataša Pavlović. On the Cauchy problem for focusing and defocusing Gross-Pitaevskii hierarchies. Discrete & Continuous Dynamical Systems - A, 2010, 27 (2) : 715-739. doi: 10.3934/dcds.2010.27.715

[7]

Xiaoyu Zeng, Yimin Zhang. Asymptotic behaviors of ground states for a modified Gross-Pitaevskii equation. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 5263-5273. doi: 10.3934/dcds.2019214

[8]

E. Norman Dancer. On a degree associated with the Gross-Pitaevskii system with a large parameter. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 1835-1839. doi: 10.3934/dcdss.2019120

[9]

Georgy L. Alfimov, Pavel P. Kizin, Dmitry A. Zezyulin. Gap solitons for the repulsive Gross-Pitaevskii equation with periodic potential: Coding and method for computation. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1207-1229. doi: 10.3934/dcdsb.2017059

[10]

Roy H. Goodman, Jeremy L. Marzuola, Michael I. Weinstein. Self-trapping and Josephson tunneling solutions to the nonlinear Schrödinger / Gross-Pitaevskii equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 225-246. doi: 10.3934/dcds.2015.35.225

[11]

Shuai Li, Jingjing Yan, Xincai Zhu. Constraint minimizers of perturbed gross-pitaevskii energy functionals in $\mathbb{R}^N$. Communications on Pure & Applied Analysis, 2019, 18 (1) : 65-81. doi: 10.3934/cpaa.2019005

[12]

Weiran Sun, Min Tang. A relaxation method for one dimensional traveling waves of singular and nonlocal equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1459-1491. doi: 10.3934/dcdsb.2013.18.1459

[13]

Wei Wang, Yan Lv. Limit behavior of nonlinear stochastic wave equations with singular perturbation. Discrete & Continuous Dynamical Systems - B, 2010, 13 (1) : 175-193. doi: 10.3934/dcdsb.2010.13.175

[14]

Hua Chen, Ling-Jun Wang. A perturbation approach for the transverse spectral stability of small periodic traveling waves of the ZK equation. Kinetic & Related Models, 2012, 5 (2) : 261-281. doi: 10.3934/krm.2012.5.261

[15]

Andrea Corli, Lorenzo di Ruvo, Luisa Malaguti, Massimiliano D. Rosini. Traveling waves for degenerate diffusive equations on networks. Networks & Heterogeneous Media, 2017, 12 (3) : 339-370. doi: 10.3934/nhm.2017015

[16]

John M. Hong, Cheng-Hsiung Hsu, Bo-Chih Huang, Tzi-Sheng Yang. Geometric singular perturbation approach to the existence and instability of stationary waves for viscous traffic flow models. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1501-1526. doi: 10.3934/cpaa.2013.12.1501

[17]

Xiao-Biao Lin, Stephen Schecter. Traveling waves and shock waves. Discrete & Continuous Dynamical Systems - A, 2004, 10 (4) : i-ii. doi: 10.3934/dcds.2004.10.4i

[18]

Yuzo Hosono. Traveling waves for a diffusive Lotka-Volterra competition model I: singular perturbations. Discrete & Continuous Dynamical Systems - B, 2003, 3 (1) : 79-95. doi: 10.3934/dcdsb.2003.3.79

[19]

Fengxin Chen. Stability and uniqueness of traveling waves for system of nonlocal evolution equations with bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2009, 24 (3) : 659-673. doi: 10.3934/dcds.2009.24.659

[20]

Albert Erkip, Abba I. Ramadan. Existence of traveling waves for a class of nonlocal nonlinear equations with bell shaped kernels. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2125-2132. doi: 10.3934/cpaa.2017105

2017 Impact Factor: 1.179

Article outline

[Back to Top]