# American Institute of Mathematical Sciences

December  2019, 39(12): 6801-6824. doi: 10.3934/dcds.2019232

## Superfluids passing an obstacle and vortex nucleation

 1 Courant Institute of Mathematical Sciences, 251 Mercer Street, New York, NY. 10012, USA 2 Department of Mathematics, University of British Columbia, Vancouver BC V6T 1Z2, Canada

Dedicated to Professor Luis Caffarelli on the occasion of his 70th birthday, with deep admiration

Received  June 2018 Revised  July 2018 Published  June 2019

We consider a superfluid described by the Gross-Pitaevskii equation passing an obstacle
 $\epsilon^2 \Delta u+ u(1-|u|^2) = 0 \ \mbox{in} \ {\mathbb R}^d \backslash \Omega, \ \ \frac{\partial u}{\partial \nu} = 0 \ \mbox{on}\ \partial \Omega$
where
 $\Omega$
is a smooth bounded domain in
 ${\mathbb R}^d$
(
 $d\geq 2$
), which is referred as the obstacle and
 $\epsilon>0$
is sufficiently small. We first construct a vortex free solution of the form
 $u = \rho_\epsilon (x) e^{i \frac{\Phi_\epsilon}{\epsilon}}$
with
 $\rho_\epsilon (x) \to 1-|\nabla \Phi^\delta(x)|^2, \Phi_\epsilon (x) \to \Phi^\delta (x)$
where
 $\Phi^\delta (x)$
is the unique solution for the subsonic irrotational flow equation
 $\nabla ( (1-|\nabla \Phi|^2)\nabla \Phi ) = 0 \ \mbox{in} \ {\mathbb R}^d \backslash \Omega, \ \frac{\partial \Phi}{\partial \nu} = 0 \ \mbox{on} \ \partial \Omega, \ \nabla \Phi (x) \to \delta \vec{e}_d \ \mbox{as} \ |x| \to +\infty$
and
 $|\delta | <\delta_{*}$
(the sound speed).
In dimension
 $d = 2$
, on the background of this vortex free solution we also construct solutions with single vortex close to the maximum or minimum points of the function
 $|\nabla \Phi^\delta (x)|^2$
(which are on the boundary of the obstacle). The latter verifies the vortex nucleation phenomena (for the steady states) in superfluids described by the Gross-Pitaevskii equations. Moreover, after some proper scalings, the limits of these vortex solutions are traveling wave solution of the Gross-Pitaevskii equation. These results also show rigorously the conclusions drawn from the numerical computations in [26,27].
Extensions to Dirichlet boundary conditions, which may be more consistent with the situation in the physical experiments and numerical simulations (see [1] and references therein) for the trapped Bose-Einstein condensates, are also discussed.
Citation: Fanghua Lin, Juncheng Wei. Superfluids passing an obstacle and vortex nucleation. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 6801-6824. doi: 10.3934/dcds.2019232
##### References:
 [1] A. Aftalion, Q. Du and Y. Pomeau, Dissipative flow and vortex shedding in the Painleve boundary layer of a Bose-Einstein condensate, Phys. Rev. Lett., 91 (2003), 090407-1-4. Google Scholar [2] F. Bethuel and J.-C. Saut, Travelling waves for the Gross-Pitaevskii equation. Ⅰ, Ann. Inst. H. Poincare' Phys. The'or., 70 (1999), 147-238. Google Scholar [3] F. Bethuel, G. Orlandi and D. Smets, Vortex rings for the Gross-Pitaevskii equation, J. Eur. Math. Soc., 6 (2004), 17-94. Google Scholar [4] F. Bethuel, P. Gravejat and J.-G. Saut, Travelling waves for the Gross-Pitaevskii equation, Ⅱ, Comm. Math. Phys., 285 (2009), 567-651. doi: 10.1007/s00220-008-0614-2. Google Scholar [5] F. Bethuel, H. Brezis and F. He'lein, Asymptotics for the minimization of a Ginzburg-Landau functional, Calc. Var. and PDE., 1 (1993), 123-148. doi: 10.1007/BF01191614. Google Scholar [6] F. Bethuel, H. Brezis and F. He'lein, Ginzburg-Landau Vortices, Birkha"user, Boston, 1994 doi: 10.1007/978-1-4612-0287-5. Google Scholar [7] F. Bethuel, P. Gravejat and J.-C. Saut, Travelling waves for the Gross-Pitaevskii equation. Ⅱ, Comm. Math. Phys., 285 (2009), 567-651. doi: 10.1007/s00220-008-0614-2. Google Scholar [8] L. Bers, Ezistence and uniqueness of a subsonic pow past a given profile, Comm. Pure Appl. Math., 7 (1954), 441-504. doi: 10.1002/cpa.3160070303. Google Scholar [9] L. Bers, Mathematical Aspects of Subsonic and Transonic Gas Dynamics, John Wiley and Sons, New York, 1958. Google Scholar [10] S. Byun and L. Wang, The conormal derivative problem for elliptic equations with BMO coefficients on Reifenberg flat domains, Proc. Lond. Math. Soc., 90 (2005), 245-272. doi: 10.1112/S0024611504014960. Google Scholar [11] R. Carles, R. Danchin and J.-C. Saut, Madelung, Gross-Pitaevskii and Korteweg, Nonlinearity, 25 (2012), 2843-2873. doi: 10.1088/0951-7715/25/10/2843. Google Scholar [12] D. Chiron and M. Maris, Rarefaction pulses for the nonlinear Schrödinger equation in the transonic limit, Comm. Math. Phys., 326 (2014), 329-392. doi: 10.1007/s00220-013-1879-7. Google Scholar [13] C. Coste, Nonlinear Schrodinger equation and superfluid hydrodynamics, Eur. Phys. J. B Condens. Matter Phys., 1 (1998), 245-253. doi: 10.1007/s100510050178. Google Scholar [14] M. del Pino, M. Kowalczyk and J. Wei, Entire solutions of the Allen-Cahn equation and complete embedded minimal surfaces of finite total curvature, Journal of Differential Geometry, 83 (2013), 67-131. doi: 10.4310/jdg/1357141507. Google Scholar [15] M. del Pino, M. Kowalczyk and M. Musso, Variational reduction for Ginzburg-Landau vortices, J. Funct. Anal., 239 (2006), 497-541. doi: 10.1016/j.jfa.2006.07.006. Google Scholar [16] G.-C. Dong and B. Ou, Subsonic flows around a body in space, Comm. Partial Differential Equations, 18 (1993), 355-379. doi: 10.1080/03605309308820933. Google Scholar [17] M. del Pino, P. Felmer and M. Kowalczyk, Minimality and nondegeneracy of degree-one Ginzburg-Landau vortex as a Hardy's type inequality, Int. Math. Res. Not., (2004), 1511-1527. doi: 10.1155/S1073792804133588. Google Scholar [18] Q. Du, J. Wei and C. Zhao, Vortex solutions of the high-$\kappa$ high-field Ginzburg-Landau model with an applied current, SIAM J. Math. Anal., 42 (2010), 2368-2401. doi: 10.1137/090769983. Google Scholar [19] R. Finn and D. Gilbarg, Three dimensional subsonicflows and asymptotic estimates for elliptic partial differential equations, Acta Math., 98 (1957), 265-296. doi: 10.1007/BF02404476. Google Scholar [20] T. Frisch, Y. Pomeau and S. Rica, Transition to dissipation in a model of superflow, Phys. Rev. Lett., 69 (1992), 1644-1647. doi: 10.1103/PhysRevLett.69.1644. Google Scholar [21] P. Gravejat, Asymptotics for the travelling waves in the Gross-Pitaevskii equation, Asymptot. Anal., 45 (2005), 227-299. Google Scholar [22] P. Gravejat, Limit at infinity and nonexistence results for sonic travelling waves in the Gross-Pitaevskii equation, Differential Integral Equations, 17 (2004), 1213-1232. Google Scholar [23] P. Gravejat, Decay for travelling waves in the Gross-Pitaevskii equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004), 591-637. doi: 10.1016/j.anihpc.2003.09.001. Google Scholar [24] P. Gravejat, A non-existence result for supersonic travelling waves in the Gross-Pitaevskii equation, Comm. Math. Phys., 243 (2003), 93-103. doi: 10.1007/s00220-003-0961-y. Google Scholar [25] J. Grant and P. H. Roberts, Motions in a Bose condensate. Ⅲ. The structure and effective masses of charged and uncharged impurities, J. Phys. A: Math., Nucl. Gen., 7 (1974), 260-279. doi: 10.1088/0305-4470/34/1/306. Google Scholar [26] C. Huepe and M. E. Brachet, Scaling laws for vortical nucleation solutions in a model of superflow, Phys. D, 140 (2000), 126-140. doi: 10.1016/S0167-2789(99)00229-8. Google Scholar [27] M. Abid, C. Huepe, S. Metens, C. Nore, C. T. Pham, L. S. Tuckerman and M. E. Brachet, Gross-Pitaevskii dynamics of Bose-Einstein condensates and superfluid turbulence, Fluid Dynam. Res., 33 (2003), 509-544. doi: 10.1016/j.fluiddyn.2003.09.001. Google Scholar [28] C. A. Jones, S. J. Putterman and P. H. Roberts, Stability of wave solutions of nonlinear Schrodinger equations in two and three dimensions, J. Phys A: Math. Gen., 19 (1986), 2991-3011. Google Scholar [29] C. A. Jones and P. H. Roberts, Motion in a Bose condensate Ⅳ, Axisymmetric solitary waves, J. Phys. A, 15 (1982), 2599-2619. doi: 10.1088/0305-4470/15/8/036. Google Scholar [30] C. Josserand and Y. Pomeau, Nonlinear aspects of the theory of Bose-Einstein condensates, Nonlinearity, 14 (2001), R25-R62. doi: 10.1088/0951-7715/14/5/201. Google Scholar [31] C. Josserand, Y. Pomeau and S. Rica, Vortex shedding in a model of superflow, Phys. D, 134 (1999), 111-125. doi: 10.1016/S0167-2789(99)00066-4. Google Scholar [32] L. Landau and E. Lifshitz, On the theory of the dispersion of magnetic permeability in ferromagnetic bodies, Phys. Z. Sowj, 8 (1935), 153. Google Scholar [33] F.-H. Lin and J. Wei, Traveling wave solutions of Schrödinger map equation, Comm. Pure Appl. Math., 63 (2010), 1585-1621. doi: 10.1002/cpa.20338. Google Scholar [34] F.-H. Lin and P. Zhang, Semiclassical limit of the Gross-Pitaevskii equation in an exterior domain, Arch. Ration. Mech. Anal., 179 (2006), 79-107. doi: 10.1007/s00205-005-0383-4. Google Scholar [35] Y. Liu and J. Wei, Adler-Moser polynomials and traveling waves solutions of Gross-Pitaevskii, preprint.Google Scholar [36] P. I. Lizorkin, Multipliers of Fourier integrals, Proc. Steklov Inst. Math., 89 (1967), 269-290. Google Scholar [37] M. Maris, Existence of nonstationary bubbles in higher dimensions, J. Math. Pures Appl., 81 (2002), 1207-1239. doi: 10.1016/S0021-7824(02)01274-6. Google Scholar [38] M. Maris, Nonexistence of supersonic traveling waves for nonlinear Schrödinger equations with nonzero conditions at infinity, SIAM J. Math. Anal., 40 (2008), 1076-1103. doi: 10.1137/070711189. Google Scholar [39] M. Maris, Traveling waves for nonlinear Schrodinger equations with nonzero conditions at infinity, Ann. Math., 178 (2013), 107-182. doi: 10.4007/annals.2013.178.1.2. Google Scholar [40] C.-T. Pham, C. Nore and M. E. Brachet, Boundary layers and emitted excitations in nonlinear Schröinger superflow past a disk, Phys. D, 210 (2005), 203-226. doi: 10.1016/j.physd.2005.07.013. Google Scholar [41] S. Rica, A remark on the critical speed of vortex nucleation in the nonlinear Schrodinger equation, Phys. D, 148 (2001), 221-226. doi: 10.1016/S0167-2789(00)00168-8. Google Scholar [42] O. Rey and J. Wei, Blowing up solutions for an elliptic Neumann problem with sub- or supercritical nonlinearity. Part Ⅱ: $N \geq 4$, Ann. Non linearie, Annoles de l'Institut H. Poincaré, 22 (2005), 459-484. doi: 10.1016/j.anihpc.2004.07.004. Google Scholar [43] M. Shiffman, On the ezistence of subsonic flows of a compressible fluid, Arch. Rational Mech. Anal., 2 (1952), 605-652. doi: 10.1512/iumj.1952.1.51020. Google Scholar [44] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Mathematical Series, vol. 32, Princeton University Press, Princeton, NJ, 1971. Google Scholar [45] J. Wei, Uniqueness and critical spectrum of boundary spike solutions, Proc. Royal Soc. Edin. A, 131 (2001), 1457-1480. doi: 10.1017/S0308210500001487. Google Scholar

show all references

##### References:
 [1] A. Aftalion, Q. Du and Y. Pomeau, Dissipative flow and vortex shedding in the Painleve boundary layer of a Bose-Einstein condensate, Phys. Rev. Lett., 91 (2003), 090407-1-4. Google Scholar [2] F. Bethuel and J.-C. Saut, Travelling waves for the Gross-Pitaevskii equation. Ⅰ, Ann. Inst. H. Poincare' Phys. The'or., 70 (1999), 147-238. Google Scholar [3] F. Bethuel, G. Orlandi and D. Smets, Vortex rings for the Gross-Pitaevskii equation, J. Eur. Math. Soc., 6 (2004), 17-94. Google Scholar [4] F. Bethuel, P. Gravejat and J.-G. Saut, Travelling waves for the Gross-Pitaevskii equation, Ⅱ, Comm. Math. Phys., 285 (2009), 567-651. doi: 10.1007/s00220-008-0614-2. Google Scholar [5] F. Bethuel, H. Brezis and F. He'lein, Asymptotics for the minimization of a Ginzburg-Landau functional, Calc. Var. and PDE., 1 (1993), 123-148. doi: 10.1007/BF01191614. Google Scholar [6] F. Bethuel, H. Brezis and F. He'lein, Ginzburg-Landau Vortices, Birkha"user, Boston, 1994 doi: 10.1007/978-1-4612-0287-5. Google Scholar [7] F. Bethuel, P. Gravejat and J.-C. Saut, Travelling waves for the Gross-Pitaevskii equation. Ⅱ, Comm. Math. Phys., 285 (2009), 567-651. doi: 10.1007/s00220-008-0614-2. Google Scholar [8] L. Bers, Ezistence and uniqueness of a subsonic pow past a given profile, Comm. Pure Appl. Math., 7 (1954), 441-504. doi: 10.1002/cpa.3160070303. Google Scholar [9] L. Bers, Mathematical Aspects of Subsonic and Transonic Gas Dynamics, John Wiley and Sons, New York, 1958. Google Scholar [10] S. Byun and L. Wang, The conormal derivative problem for elliptic equations with BMO coefficients on Reifenberg flat domains, Proc. Lond. Math. Soc., 90 (2005), 245-272. doi: 10.1112/S0024611504014960. Google Scholar [11] R. Carles, R. Danchin and J.-C. Saut, Madelung, Gross-Pitaevskii and Korteweg, Nonlinearity, 25 (2012), 2843-2873. doi: 10.1088/0951-7715/25/10/2843. Google Scholar [12] D. Chiron and M. Maris, Rarefaction pulses for the nonlinear Schrödinger equation in the transonic limit, Comm. Math. Phys., 326 (2014), 329-392. doi: 10.1007/s00220-013-1879-7. Google Scholar [13] C. Coste, Nonlinear Schrodinger equation and superfluid hydrodynamics, Eur. Phys. J. B Condens. Matter Phys., 1 (1998), 245-253. doi: 10.1007/s100510050178. Google Scholar [14] M. del Pino, M. Kowalczyk and J. Wei, Entire solutions of the Allen-Cahn equation and complete embedded minimal surfaces of finite total curvature, Journal of Differential Geometry, 83 (2013), 67-131. doi: 10.4310/jdg/1357141507. Google Scholar [15] M. del Pino, M. Kowalczyk and M. Musso, Variational reduction for Ginzburg-Landau vortices, J. Funct. Anal., 239 (2006), 497-541. doi: 10.1016/j.jfa.2006.07.006. Google Scholar [16] G.-C. Dong and B. Ou, Subsonic flows around a body in space, Comm. Partial Differential Equations, 18 (1993), 355-379. doi: 10.1080/03605309308820933. Google Scholar [17] M. del Pino, P. Felmer and M. Kowalczyk, Minimality and nondegeneracy of degree-one Ginzburg-Landau vortex as a Hardy's type inequality, Int. Math. Res. Not., (2004), 1511-1527. doi: 10.1155/S1073792804133588. Google Scholar [18] Q. Du, J. Wei and C. Zhao, Vortex solutions of the high-$\kappa$ high-field Ginzburg-Landau model with an applied current, SIAM J. Math. Anal., 42 (2010), 2368-2401. doi: 10.1137/090769983. Google Scholar [19] R. Finn and D. Gilbarg, Three dimensional subsonicflows and asymptotic estimates for elliptic partial differential equations, Acta Math., 98 (1957), 265-296. doi: 10.1007/BF02404476. Google Scholar [20] T. Frisch, Y. Pomeau and S. Rica, Transition to dissipation in a model of superflow, Phys. Rev. Lett., 69 (1992), 1644-1647. doi: 10.1103/PhysRevLett.69.1644. Google Scholar [21] P. Gravejat, Asymptotics for the travelling waves in the Gross-Pitaevskii equation, Asymptot. Anal., 45 (2005), 227-299. Google Scholar [22] P. Gravejat, Limit at infinity and nonexistence results for sonic travelling waves in the Gross-Pitaevskii equation, Differential Integral Equations, 17 (2004), 1213-1232. Google Scholar [23] P. Gravejat, Decay for travelling waves in the Gross-Pitaevskii equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004), 591-637. doi: 10.1016/j.anihpc.2003.09.001. Google Scholar [24] P. Gravejat, A non-existence result for supersonic travelling waves in the Gross-Pitaevskii equation, Comm. Math. Phys., 243 (2003), 93-103. doi: 10.1007/s00220-003-0961-y. Google Scholar [25] J. Grant and P. H. Roberts, Motions in a Bose condensate. Ⅲ. The structure and effective masses of charged and uncharged impurities, J. Phys. A: Math., Nucl. Gen., 7 (1974), 260-279. doi: 10.1088/0305-4470/34/1/306. Google Scholar [26] C. Huepe and M. E. Brachet, Scaling laws for vortical nucleation solutions in a model of superflow, Phys. D, 140 (2000), 126-140. doi: 10.1016/S0167-2789(99)00229-8. Google Scholar [27] M. Abid, C. Huepe, S. Metens, C. Nore, C. T. Pham, L. S. Tuckerman and M. E. Brachet, Gross-Pitaevskii dynamics of Bose-Einstein condensates and superfluid turbulence, Fluid Dynam. Res., 33 (2003), 509-544. doi: 10.1016/j.fluiddyn.2003.09.001. Google Scholar [28] C. A. Jones, S. J. Putterman and P. H. Roberts, Stability of wave solutions of nonlinear Schrodinger equations in two and three dimensions, J. Phys A: Math. Gen., 19 (1986), 2991-3011. Google Scholar [29] C. A. Jones and P. H. Roberts, Motion in a Bose condensate Ⅳ, Axisymmetric solitary waves, J. Phys. A, 15 (1982), 2599-2619. doi: 10.1088/0305-4470/15/8/036. Google Scholar [30] C. Josserand and Y. Pomeau, Nonlinear aspects of the theory of Bose-Einstein condensates, Nonlinearity, 14 (2001), R25-R62. doi: 10.1088/0951-7715/14/5/201. Google Scholar [31] C. Josserand, Y. Pomeau and S. Rica, Vortex shedding in a model of superflow, Phys. D, 134 (1999), 111-125. doi: 10.1016/S0167-2789(99)00066-4. Google Scholar [32] L. Landau and E. Lifshitz, On the theory of the dispersion of magnetic permeability in ferromagnetic bodies, Phys. Z. Sowj, 8 (1935), 153. Google Scholar [33] F.-H. Lin and J. Wei, Traveling wave solutions of Schrödinger map equation, Comm. Pure Appl. Math., 63 (2010), 1585-1621. doi: 10.1002/cpa.20338. Google Scholar [34] F.-H. Lin and P. Zhang, Semiclassical limit of the Gross-Pitaevskii equation in an exterior domain, Arch. Ration. Mech. Anal., 179 (2006), 79-107. doi: 10.1007/s00205-005-0383-4. Google Scholar [35] Y. Liu and J. Wei, Adler-Moser polynomials and traveling waves solutions of Gross-Pitaevskii, preprint.Google Scholar [36] P. I. Lizorkin, Multipliers of Fourier integrals, Proc. Steklov Inst. Math., 89 (1967), 269-290. Google Scholar [37] M. Maris, Existence of nonstationary bubbles in higher dimensions, J. Math. Pures Appl., 81 (2002), 1207-1239. doi: 10.1016/S0021-7824(02)01274-6. Google Scholar [38] M. Maris, Nonexistence of supersonic traveling waves for nonlinear Schrödinger equations with nonzero conditions at infinity, SIAM J. Math. Anal., 40 (2008), 1076-1103. doi: 10.1137/070711189. Google Scholar [39] M. Maris, Traveling waves for nonlinear Schrodinger equations with nonzero conditions at infinity, Ann. Math., 178 (2013), 107-182. doi: 10.4007/annals.2013.178.1.2. Google Scholar [40] C.-T. Pham, C. Nore and M. E. Brachet, Boundary layers and emitted excitations in nonlinear Schröinger superflow past a disk, Phys. D, 210 (2005), 203-226. doi: 10.1016/j.physd.2005.07.013. Google Scholar [41] S. Rica, A remark on the critical speed of vortex nucleation in the nonlinear Schrodinger equation, Phys. D, 148 (2001), 221-226. doi: 10.1016/S0167-2789(00)00168-8. Google Scholar [42] O. Rey and J. Wei, Blowing up solutions for an elliptic Neumann problem with sub- or supercritical nonlinearity. Part Ⅱ: $N \geq 4$, Ann. Non linearie, Annoles de l'Institut H. Poincaré, 22 (2005), 459-484. doi: 10.1016/j.anihpc.2004.07.004. Google Scholar [43] M. Shiffman, On the ezistence of subsonic flows of a compressible fluid, Arch. Rational Mech. Anal., 2 (1952), 605-652. doi: 10.1512/iumj.1952.1.51020. Google Scholar [44] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Mathematical Series, vol. 32, Princeton University Press, Princeton, NJ, 1971. Google Scholar [45] J. Wei, Uniqueness and critical spectrum of boundary spike solutions, Proc. Royal Soc. Edin. A, 131 (2001), 1457-1480. doi: 10.1017/S0308210500001487. Google Scholar
 [1] Ko-Shin Chen, Peter Sternberg. Dynamics of Ginzburg-Landau and Gross-Pitaevskii vortices on manifolds. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1905-1931. doi: 10.3934/dcds.2014.34.1905 [2] Norman E. Dancer. On the converse problem for the Gross-Pitaevskii equations with a large parameter. Discrete & Continuous Dynamical Systems - A, 2014, 34 (6) : 2481-2493. doi: 10.3934/dcds.2014.34.2481 [3] André de Laire, Pierre Mennuni. Traveling waves for some nonlocal 1D Gross–Pitaevskii equations with nonzero conditions at infinity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (1) : 635-682. doi: 10.3934/dcds.2020026 [4] Yujin Guo, Xiaoyu Zeng, Huan-Song Zhou. Blow-up solutions for two coupled Gross-Pitaevskii equations with attractive interactions. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3749-3786. doi: 10.3934/dcds.2017159 [5] Jeremy L. Marzuola, Michael I. Weinstein. Long time dynamics near the symmetry breaking bifurcation for nonlinear Schrödinger/Gross-Pitaevskii equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1505-1554. doi: 10.3934/dcds.2010.28.1505 [6] Dong Deng, Ruikuan Liu. Bifurcation solutions of Gross-Pitaevskii equations for spin-1 Bose-Einstein condensates. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3175-3193. doi: 10.3934/dcdsb.2018306 [7] Thomas Chen, Nataša Pavlović. On the Cauchy problem for focusing and defocusing Gross-Pitaevskii hierarchies. Discrete & Continuous Dynamical Systems - A, 2010, 27 (2) : 715-739. doi: 10.3934/dcds.2010.27.715 [8] Xiaoyu Zeng, Yimin Zhang. Asymptotic behaviors of ground states for a modified Gross-Pitaevskii equation. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 5263-5273. doi: 10.3934/dcds.2019214 [9] E. Norman Dancer. On a degree associated with the Gross-Pitaevskii system with a large parameter. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 1835-1839. doi: 10.3934/dcdss.2019120 [10] Patrick Henning, Johan Wärnegård. Numerical comparison of mass-conservative schemes for the Gross-Pitaevskii equation. Kinetic & Related Models, 2019, 12 (6) : 1247-1271. doi: 10.3934/krm.2019048 [11] Georgy L. Alfimov, Pavel P. Kizin, Dmitry A. Zezyulin. Gap solitons for the repulsive Gross-Pitaevskii equation with periodic potential: Coding and method for computation. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1207-1229. doi: 10.3934/dcdsb.2017059 [12] Roy H. Goodman, Jeremy L. Marzuola, Michael I. Weinstein. Self-trapping and Josephson tunneling solutions to the nonlinear Schrödinger / Gross-Pitaevskii equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 225-246. doi: 10.3934/dcds.2015.35.225 [13] Shuai Li, Jingjing Yan, Xincai Zhu. Constraint minimizers of perturbed gross-pitaevskii energy functionals in $\mathbb{R}^N$. Communications on Pure & Applied Analysis, 2019, 18 (1) : 65-81. doi: 10.3934/cpaa.2019005 [14] Weiran Sun, Min Tang. A relaxation method for one dimensional traveling waves of singular and nonlocal equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1459-1491. doi: 10.3934/dcdsb.2013.18.1459 [15] Hua Chen, Ling-Jun Wang. A perturbation approach for the transverse spectral stability of small periodic traveling waves of the ZK equation. Kinetic & Related Models, 2012, 5 (2) : 261-281. doi: 10.3934/krm.2012.5.261 [16] Wei Wang, Yan Lv. Limit behavior of nonlinear stochastic wave equations with singular perturbation. Discrete & Continuous Dynamical Systems - B, 2010, 13 (1) : 175-193. doi: 10.3934/dcdsb.2010.13.175 [17] Andrea Corli, Lorenzo di Ruvo, Luisa Malaguti, Massimiliano D. Rosini. Traveling waves for degenerate diffusive equations on networks. Networks & Heterogeneous Media, 2017, 12 (3) : 339-370. doi: 10.3934/nhm.2017015 [18] John M. Hong, Cheng-Hsiung Hsu, Bo-Chih Huang, Tzi-Sheng Yang. Geometric singular perturbation approach to the existence and instability of stationary waves for viscous traffic flow models. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1501-1526. doi: 10.3934/cpaa.2013.12.1501 [19] Xiao-Biao Lin, Stephen Schecter. Traveling waves and shock waves. Discrete & Continuous Dynamical Systems - A, 2004, 10 (4) : i-ii. doi: 10.3934/dcds.2004.10.4i [20] Yuzo Hosono. Traveling waves for a diffusive Lotka-Volterra competition model I: singular perturbations. Discrete & Continuous Dynamical Systems - B, 2003, 3 (1) : 79-95. doi: 10.3934/dcdsb.2003.3.79

2018 Impact Factor: 1.143