doi: 10.3934/dcds.2019227

Cauchy problem of semilinear inhomogeneous elliptic equations of Matukuma-type with multiple growth terms

1. 

School of Mathematics and Information Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, China

2. 

Department of Mathematics, California State University, Northridge, CA 91325, USA

3. 

School of Science, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China

* Corresponding author: Yi Li

Received  April 2018 Revised  November 2018 Published  June 2019

Fund Project: Y. Jia and J. Wu are supported in part by the Natural Science Foundations of China (11771262, 11671243, 61672021), by the Natural Science Basic Research Plan in Shaanxi Province of China (2018JM1020)

We consider the structure and the stability of positive radial solutions of a semilinear inhomogeneous elliptic equation with multiple growth terms
$ \Delta u+\sum\limits_{i = 1}^{k}K_i(|x|)u^{p_i}+\mu f(|x|) = 0, \quad x\in\mathbb{R}^n, $
which is a generalization of Matukuma's equation describing the dynamics of a globular cluster of stars. Equations similar to this kind have come up both in geometry and in physics, and have been a subject of extensive studies. Our result shows that any positive radial solution is stable or weakly asymptotically stable with respect to certain norm.
Citation: Yunfeng Jia, Yi Li, Jianhua Wu, Hong-Kun Xu. Cauchy problem of semilinear inhomogeneous elliptic equations of Matukuma-type with multiple growth terms. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2019227
References:
[1]

D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusion arising in population genetics, Adv. Math., 30 (1978), 33-76. doi: 10.1016/0001-8708(78)90130-5.

[2]

S. Bae, Infinite multiplicity and separation structure of positive solutions for a semilinear elliptic equation in $\mathbb{R}^n$, J. Differential Equations, 200 (2004), 274-311. doi: 10.1016/j.jde.2003.11.006.

[3]

S. Bae, Separation structure of positive radial solutions of a semilinear elliptic equation in $\mathbb{R}^n$, J. Differential Equations, 194 (2003), 460-499. doi: 10.1016/S0022-0396(03)00172-4.

[4]

S. Bae and T.-K. Chang, On a class of semilinear elliptic equations in $\mathbb{R}^n$, J. Differential Equations, 185 (2002), 225-250. doi: 10.1006/jdeq.2001.4162.

[5]

S. Bae and W.-M. Ni, Existence and infinite multiplicity for an inhomogeneous semilinear elliptic equation on $\mathbb{R}^n$, Math. Ann., 320 (2001), 191-210. doi: 10.1007/PL00004468.

[6]

S.-H. Chen and G.-Z. Lu, Asymptotic behavior of radial solutions for a class of semilinear elliptic equations, J. Differential Equations, 133 (1997), 340-354. doi: 10.1006/jdeq.1996.3208.

[7]

Y. Deng and Y. Li, Existence of multiple positive solutions for a semilinear elliptic equation, Adv. Differential Equations, 2 (1997), 361-382.

[8]

Y. DengY. Li and Y. Liu, On the stability of the positive radial steady states for a semilinear Cauchy problem, Nonlinear Anal., 54 (2003), 291-318. doi: 10.1016/S0362-546X(03)00064-6.

[9]

Y. DengY. Li and F. Yang, On the stability of the positive steady states for a nonhomogeneous semilinear Cauchy problem, J. Differential Equations, 228 (2006), 507-529. doi: 10.1016/j.jde.2006.02.010.

[10]

Y. Deng and F. Yang, Existence and asymptotic behavior of positive solutions for an inhomogeneous semilinear elliptic equation, Nonlinear Anal., 68 (2008), 246-272. doi: 10.1016/j.na.2006.10.046.

[11]

W.-R. DerrickS. Chen and J. A. Cima, Oscillatory radial solutions of semilinear elliptic equations, J. Math. Anal. Appl., 208 (1997), 425-445. doi: 10.1006/jmaa.1997.5325.

[12]

W.-Y. Ding and W.-M. Ni, On the elliptic equation $\Delta u+ku^{\frac{(n+2)}{(n-2)}} = 0$ and related topics, Duke Math. J., 52 (1985), 485-506. doi: 10.1215/S0012-7094-85-05224-X.

[13]

A. S. Eddington, The dynamics of a globular stellar system, Monthly Notices Roy. Astronom. Soc., 75 (1915), 366-376.

[14]

M. Franca, Some results on the m-Laplace equations with two growth terms, J. Differential Equations, 17 (2005), 391-425. doi: 10.1007/s10884-005-4572-5.

[15]

A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs, New Jersey, 1964.

[16]

H. Fujita, On the blowing up of solutions of the Cauchy problem for $u_t = \Delta u+u^{1+\alpha}$, J. Fac. Sci. Univ. Tokyo, 13 (1966), 109-124.

[17]

B. GidasW.-M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys., 68 (1979), 209-243. doi: 10.1007/BF01221125.

[18]

C.-F. Gui, On positive entire solutions of the elliptic equation $\Delta u+K(x)u^p = 0$ and its applications to Riemannian geometry, Proc. Roy. Soc. Edinburgh Sect. A, 126 (1996), 225-237. doi: 10.1017/S0308210500022708.

[19]

C.-F. Gui, Positive entire solutions of equation $\Delta u+f(x, u) = 0$, J. Differential Equations, 99 (1992), 245-280. doi: 10.1016/0022-0396(92)90023-G.

[20]

C.-F. GuiW.-M. Ni and X.-F. Wang, Further study on a nonlinear heat equation, J. Differential Equations, 169 (2001), 588-613. doi: 10.1006/jdeq.2000.3909.

[21]

C.-F. GuiW.-M. Ni and X.-F. Wang, On the stability and instability of positive steady state of a semilinear heat equation in $\mathbb{R}^n$, Comm. Pure Appl. Math., 45 (1992), 1153-1181. doi: 10.1002/cpa.3160450906.

[22]

N. Kawano, On bounded entire solutions of semilinear elliptic equations, Hiroshima Math. J., 14 (1984), 125-158. doi: 10.32917/hmj/1206133151.

[23]

T. Kusano and M. Naito, Oscillation theory of entire solutions of second order superlinear elliptic equations, Funkcial. Ekvac., 30 (1987), 269-282.

[24]

T.-Y. Lee and W.-M. Ni, Global existence, large time behavior and life span of solutions of semilinear parabolic Cauchy problems, Trans. Amer. Math. Soc., 333 (1992), 365-371. doi: 10.1090/S0002-9947-1992-1057781-6.

[25]

Y. Li, Asymptotic behavior of positive solutions of equation $\Delta u+K(x)u^p = 0$ in $\mathbb{R}^n$, J. Differential Equations, 95 (1992), 304-330. doi: 10.1016/0022-0396(92)90034-K.

[26]

Y. Li and W.-M. Ni, On the asymptotic behavior and radial symmetry of positive solutions of semilinear elliptic equations in $\mathbb{R}^n$ I. Asymptotic behavior, Arch. Rational Mech. Anal., 118 (1992), 195-222. doi: 10.1007/BF00387895.

[27]

Y. LiuY. Li and Y. Deng, Separation property of solution for a semilinear elliptic equation, J. Differential Equations, 163 (2000), 381-406. doi: 10.1006/jdeq.1999.3735.

[28]

T. Matukuma, Dynamics of globular clusters, Nippon Temmongakkai Yoho, 1 (1930), 68–89 (In Japanese).

[29]

M. Naito, Asymptotic behaviors of solutions of second order differential equations with integral coefficients, Trans. Amer. Math. Soc., 282 (1984), 577-588. doi: 10.1090/S0002-9947-1984-0732107-9.

[30]

M. Naito, A note on bounded positive entire solution of semiliner elliptic equations, Hiroshima Math. J., 14 (1984), 211-214. doi: 10.32917/hmj/1206133156.

[31]

W.-M. Ni, On the elliptic equation $\Delta u+K(x)u^{\frac{(n+2)}{(n-2)}}=0$, it's generalizations and applications in geometry, Indiana Univ. Math. J., 31 (1982), 493-529. doi: 10.1512/iumj.1982.31.31040.

[32]

W.-M. Ni and S. Yotsutani, Semilinear elliptic equations of Matukuma type and related topics, Japan J. Appl. Math., 5 (1988), 1-32. doi: 10.1007/BF03167899.

[33]

K. Nishihara, Asymptotic behaviors of solutions of second order differential equations, J. Math. Anal. Appl., 189 (1995), 424-441. doi: 10.1006/jmaa.1995.1028.

[34]

P. Polacik and E. Yanagida, A Liouville property and quasiconvergence for a semilinear heat equation, J. Differential Equations, 208 (2005), 194-214. doi: 10.1016/j.jde.2003.10.019.

[35]

P. Polacik and E. Yanagida, On bounded and unbounded global solutions of a supercritical semilinear heat equation, Math. Ann., 327 (2003), 745-771. doi: 10.1007/s00208-003-0469-y.

[36]

X.-F. Wang, On Cauchy problem for reaction-diffusion equations, Trans. Amer. Math. Soc., 337 (1993), 549-590. doi: 10.1090/S0002-9947-1993-1153016-5.

[37]

F. Weissler, Existence and nonexistence of global solution for semilinear heat equation, Israel J. Math., 38 (1981), 29-40. doi: 10.1007/BF02761845.

[38]

F. Yang, Entire positive solutions for an inhomogeneous semilinear biharmonic equation, Nonlinear Anal., 70 (2009), 1365-1376. doi: 10.1016/j.na.2008.02.016.

[39]

F. Yang and Z. Zhang, On the stability of the positive radial steady states for a semilinear Cauchy problem, Nonlinear Anal., 80 (2013), 109-121. doi: 10.1016/j.na.2012.11.003.

[40]

F. Yang and D. Zhang, Separation property of positive radial solutions for a general semilinear elliptic equation, Acta Math. Sci., 31 (2011), 181-193. doi: 10.1016/S0252-9602(11)60219-1.

show all references

References:
[1]

D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusion arising in population genetics, Adv. Math., 30 (1978), 33-76. doi: 10.1016/0001-8708(78)90130-5.

[2]

S. Bae, Infinite multiplicity and separation structure of positive solutions for a semilinear elliptic equation in $\mathbb{R}^n$, J. Differential Equations, 200 (2004), 274-311. doi: 10.1016/j.jde.2003.11.006.

[3]

S. Bae, Separation structure of positive radial solutions of a semilinear elliptic equation in $\mathbb{R}^n$, J. Differential Equations, 194 (2003), 460-499. doi: 10.1016/S0022-0396(03)00172-4.

[4]

S. Bae and T.-K. Chang, On a class of semilinear elliptic equations in $\mathbb{R}^n$, J. Differential Equations, 185 (2002), 225-250. doi: 10.1006/jdeq.2001.4162.

[5]

S. Bae and W.-M. Ni, Existence and infinite multiplicity for an inhomogeneous semilinear elliptic equation on $\mathbb{R}^n$, Math. Ann., 320 (2001), 191-210. doi: 10.1007/PL00004468.

[6]

S.-H. Chen and G.-Z. Lu, Asymptotic behavior of radial solutions for a class of semilinear elliptic equations, J. Differential Equations, 133 (1997), 340-354. doi: 10.1006/jdeq.1996.3208.

[7]

Y. Deng and Y. Li, Existence of multiple positive solutions for a semilinear elliptic equation, Adv. Differential Equations, 2 (1997), 361-382.

[8]

Y. DengY. Li and Y. Liu, On the stability of the positive radial steady states for a semilinear Cauchy problem, Nonlinear Anal., 54 (2003), 291-318. doi: 10.1016/S0362-546X(03)00064-6.

[9]

Y. DengY. Li and F. Yang, On the stability of the positive steady states for a nonhomogeneous semilinear Cauchy problem, J. Differential Equations, 228 (2006), 507-529. doi: 10.1016/j.jde.2006.02.010.

[10]

Y. Deng and F. Yang, Existence and asymptotic behavior of positive solutions for an inhomogeneous semilinear elliptic equation, Nonlinear Anal., 68 (2008), 246-272. doi: 10.1016/j.na.2006.10.046.

[11]

W.-R. DerrickS. Chen and J. A. Cima, Oscillatory radial solutions of semilinear elliptic equations, J. Math. Anal. Appl., 208 (1997), 425-445. doi: 10.1006/jmaa.1997.5325.

[12]

W.-Y. Ding and W.-M. Ni, On the elliptic equation $\Delta u+ku^{\frac{(n+2)}{(n-2)}} = 0$ and related topics, Duke Math. J., 52 (1985), 485-506. doi: 10.1215/S0012-7094-85-05224-X.

[13]

A. S. Eddington, The dynamics of a globular stellar system, Monthly Notices Roy. Astronom. Soc., 75 (1915), 366-376.

[14]

M. Franca, Some results on the m-Laplace equations with two growth terms, J. Differential Equations, 17 (2005), 391-425. doi: 10.1007/s10884-005-4572-5.

[15]

A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs, New Jersey, 1964.

[16]

H. Fujita, On the blowing up of solutions of the Cauchy problem for $u_t = \Delta u+u^{1+\alpha}$, J. Fac. Sci. Univ. Tokyo, 13 (1966), 109-124.

[17]

B. GidasW.-M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys., 68 (1979), 209-243. doi: 10.1007/BF01221125.

[18]

C.-F. Gui, On positive entire solutions of the elliptic equation $\Delta u+K(x)u^p = 0$ and its applications to Riemannian geometry, Proc. Roy. Soc. Edinburgh Sect. A, 126 (1996), 225-237. doi: 10.1017/S0308210500022708.

[19]

C.-F. Gui, Positive entire solutions of equation $\Delta u+f(x, u) = 0$, J. Differential Equations, 99 (1992), 245-280. doi: 10.1016/0022-0396(92)90023-G.

[20]

C.-F. GuiW.-M. Ni and X.-F. Wang, Further study on a nonlinear heat equation, J. Differential Equations, 169 (2001), 588-613. doi: 10.1006/jdeq.2000.3909.

[21]

C.-F. GuiW.-M. Ni and X.-F. Wang, On the stability and instability of positive steady state of a semilinear heat equation in $\mathbb{R}^n$, Comm. Pure Appl. Math., 45 (1992), 1153-1181. doi: 10.1002/cpa.3160450906.

[22]

N. Kawano, On bounded entire solutions of semilinear elliptic equations, Hiroshima Math. J., 14 (1984), 125-158. doi: 10.32917/hmj/1206133151.

[23]

T. Kusano and M. Naito, Oscillation theory of entire solutions of second order superlinear elliptic equations, Funkcial. Ekvac., 30 (1987), 269-282.

[24]

T.-Y. Lee and W.-M. Ni, Global existence, large time behavior and life span of solutions of semilinear parabolic Cauchy problems, Trans. Amer. Math. Soc., 333 (1992), 365-371. doi: 10.1090/S0002-9947-1992-1057781-6.

[25]

Y. Li, Asymptotic behavior of positive solutions of equation $\Delta u+K(x)u^p = 0$ in $\mathbb{R}^n$, J. Differential Equations, 95 (1992), 304-330. doi: 10.1016/0022-0396(92)90034-K.

[26]

Y. Li and W.-M. Ni, On the asymptotic behavior and radial symmetry of positive solutions of semilinear elliptic equations in $\mathbb{R}^n$ I. Asymptotic behavior, Arch. Rational Mech. Anal., 118 (1992), 195-222. doi: 10.1007/BF00387895.

[27]

Y. LiuY. Li and Y. Deng, Separation property of solution for a semilinear elliptic equation, J. Differential Equations, 163 (2000), 381-406. doi: 10.1006/jdeq.1999.3735.

[28]

T. Matukuma, Dynamics of globular clusters, Nippon Temmongakkai Yoho, 1 (1930), 68–89 (In Japanese).

[29]

M. Naito, Asymptotic behaviors of solutions of second order differential equations with integral coefficients, Trans. Amer. Math. Soc., 282 (1984), 577-588. doi: 10.1090/S0002-9947-1984-0732107-9.

[30]

M. Naito, A note on bounded positive entire solution of semiliner elliptic equations, Hiroshima Math. J., 14 (1984), 211-214. doi: 10.32917/hmj/1206133156.

[31]

W.-M. Ni, On the elliptic equation $\Delta u+K(x)u^{\frac{(n+2)}{(n-2)}}=0$, it's generalizations and applications in geometry, Indiana Univ. Math. J., 31 (1982), 493-529. doi: 10.1512/iumj.1982.31.31040.

[32]

W.-M. Ni and S. Yotsutani, Semilinear elliptic equations of Matukuma type and related topics, Japan J. Appl. Math., 5 (1988), 1-32. doi: 10.1007/BF03167899.

[33]

K. Nishihara, Asymptotic behaviors of solutions of second order differential equations, J. Math. Anal. Appl., 189 (1995), 424-441. doi: 10.1006/jmaa.1995.1028.

[34]

P. Polacik and E. Yanagida, A Liouville property and quasiconvergence for a semilinear heat equation, J. Differential Equations, 208 (2005), 194-214. doi: 10.1016/j.jde.2003.10.019.

[35]

P. Polacik and E. Yanagida, On bounded and unbounded global solutions of a supercritical semilinear heat equation, Math. Ann., 327 (2003), 745-771. doi: 10.1007/s00208-003-0469-y.

[36]

X.-F. Wang, On Cauchy problem for reaction-diffusion equations, Trans. Amer. Math. Soc., 337 (1993), 549-590. doi: 10.1090/S0002-9947-1993-1153016-5.

[37]

F. Weissler, Existence and nonexistence of global solution for semilinear heat equation, Israel J. Math., 38 (1981), 29-40. doi: 10.1007/BF02761845.

[38]

F. Yang, Entire positive solutions for an inhomogeneous semilinear biharmonic equation, Nonlinear Anal., 70 (2009), 1365-1376. doi: 10.1016/j.na.2008.02.016.

[39]

F. Yang and Z. Zhang, On the stability of the positive radial steady states for a semilinear Cauchy problem, Nonlinear Anal., 80 (2013), 109-121. doi: 10.1016/j.na.2012.11.003.

[40]

F. Yang and D. Zhang, Separation property of positive radial solutions for a general semilinear elliptic equation, Acta Math. Sci., 31 (2011), 181-193. doi: 10.1016/S0252-9602(11)60219-1.

[1]

Hiroshi Morishita, Eiji Yanagida, Shoji Yotsutani. Structure of positive radial solutions including singular solutions to Matukuma's equation. Communications on Pure & Applied Analysis, 2005, 4 (4) : 871-888. doi: 10.3934/cpaa.2005.4.871

[2]

Liping Wang. Arbitrarily many solutions for an elliptic Neumann problem with sub- or supercritical nonlinearity. Communications on Pure & Applied Analysis, 2010, 9 (3) : 761-778. doi: 10.3934/cpaa.2010.9.761

[3]

Jifeng Chu, Pedro J. Torres, Feng Wang. Radial stability of periodic solutions of the Gylden-Meshcherskii-type problem. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 1921-1932. doi: 10.3934/dcds.2015.35.1921

[4]

Patricio Cerda, Leonelo Iturriaga, Sebastián Lorca, Pedro Ubilla. Positive radial solutions of a nonlinear boundary value problem. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1765-1783. doi: 10.3934/cpaa.2018084

[5]

Yanqin Fang, De Tang. Method of sub-super solutions for fractional elliptic equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3153-3165. doi: 10.3934/dcdsb.2017212

[6]

Zongming Guo, Xuefei Bai. On the global branch of positive radial solutions of an elliptic problem with singular nonlinearity. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1091-1107. doi: 10.3934/cpaa.2008.7.1091

[7]

Ruofei Yao, Yi Li, Hongbin Chen. Uniqueness of positive radial solutions of a semilinear elliptic equation in an annulus. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1585-1594. doi: 10.3934/dcds.2018122

[8]

Cunming Liu, Jianli Liu. Stability of traveling wave solutions to Cauchy problem of diagnolizable quasilinear hyperbolic systems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4735-4749. doi: 10.3934/dcds.2014.34.4735

[9]

P. Álvarez-Caudevilla, J. D. Evans, V. A. Galaktionov. The Cauchy problem for a tenth-order thin film equation II. Oscillatory source-type and fundamental similarity solutions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 807-827. doi: 10.3934/dcds.2015.35.807

[10]

Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810

[11]

Haiyan Wang. Positive radial solutions for quasilinear equations in the annulus. Conference Publications, 2005, 2005 (Special) : 878-885. doi: 10.3934/proc.2005.2005.878

[12]

Isabel Flores, Matteo Franca, Leonelo Iturriaga. Positive radial solutions involving nonlinearities with zeros. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2555-2579. doi: 10.3934/dcds.2019107

[13]

Rui-Qi Liu, Chun-Lei Tang, Jia-Feng Liao, Xing-Ping Wu. Positive solutions of Kirchhoff type problem with singular and critical nonlinearities in dimension four. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1841-1856. doi: 10.3934/cpaa.2016006

[14]

Guozhen Lu and Juncheng Wei. On positive entire solutions to the Yamabe-type problem on the Heisenberg and stratified groups. Electronic Research Announcements, 1997, 3: 83-89.

[15]

To Fu Ma. Positive solutions for a nonlocal fourth order equation of Kirchhoff type. Conference Publications, 2007, 2007 (Special) : 694-703. doi: 10.3934/proc.2007.2007.694

[16]

Leif Arkeryd, Raffaele Esposito, Rossana Marra, Anne Nouri. Exponential stability of the solutions to the Boltzmann equation for the Benard problem. Kinetic & Related Models, 2012, 5 (4) : 673-695. doi: 10.3934/krm.2012.5.673

[17]

Kai Zhao, Wei Cheng. On the vanishing contact structure for viscosity solutions of contact type Hamilton-Jacobi equations I: Cauchy problem. Discrete & Continuous Dynamical Systems - A, 2019, 39 (8) : 4345-4358. doi: 10.3934/dcds.2019176

[18]

Hernan R. Henriquez. Generalized solutions for the abstract singular Cauchy problem. Communications on Pure & Applied Analysis, 2009, 8 (3) : 955-976. doi: 10.3934/cpaa.2009.8.955

[19]

Zhuoran Du. Some properties of positive radial solutions for some semilinear elliptic equations. Communications on Pure & Applied Analysis, 2010, 9 (4) : 943-953. doi: 10.3934/cpaa.2010.9.943

[20]

Dagny Butler, Eunkyung Ko, Eun Kyoung Lee, R. Shivaji. Positive radial solutions for elliptic equations on exterior domains with nonlinear boundary conditions. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2713-2731. doi: 10.3934/cpaa.2014.13.2713

2017 Impact Factor: 1.179

Article outline

[Back to Top]